Qing-Feng Wang , Hui-Jun Jin , Dong-Liang Luo , Yu Sheng , Jun Wen , Chien-Lu Ping , Mark H. Clark , Qiang Ma , Xiao-Ying Jin , Ji-Chun Wu , Yu-Zhong Yang , Qiang Li , Raul D. Şerban , Daqing Yang , Victor F. Bense , Qing-Bai Wu
{"title":"干旱和高寒永久冻土盆地的水预算:来自亚洲高山的观测结果","authors":"Qing-Feng Wang , Hui-Jun Jin , Dong-Liang Luo , Yu Sheng , Jun Wen , Chien-Lu Ping , Mark H. Clark , Qiang Ma , Xiao-Ying Jin , Ji-Chun Wu , Yu-Zhong Yang , Qiang Li , Raul D. Şerban , Daqing Yang , Victor F. Bense , Qing-Bai Wu","doi":"10.1016/j.accre.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>Ground freeze‒thaw processes have significant impacts on infiltration, runoff and evapotranspiration. However, there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions, especially of the interactions among permafrost, ecology, and hydrology. In this study, an alpine permafrost basin on the northeastern Qinghai‒Tibet Plateau was selected to conduct hydrological and meteorological observations. We analyzed the annual variations in runoff, precipitation, evapotranspiration, and changes in water storage, as well as the mechanisms for runoff generation in the basin from May 2014 to December 2015. The annual flow curve in the basin exhibited peaks both in spring and autumn floods. The high ratio of evapotranspiration to annual precipitation (>1.0) in the investigated wetland is mainly due to the considerably underestimated ‘observed’ precipitation caused by the wind-induced instrumental error and the neglect of snow sublimation. The stream flow from early May to late October probably came from the lateral discharge of subsurface flow in alpine wetlands. This study can provide data support and validation for hydrological model simulation and prediction, as well as water resource assessment, in the upper Yellow River Basin, especially for the headwater area. The results also provide case support for permafrost hydrology modeling in ungauged or poorly gauged watersheds in the High Mountain Asia.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 5","pages":"Pages 830-844"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water budgets in an arid and alpine permafrost basin: Observations from the High Mountain Asia\",\"authors\":\"Qing-Feng Wang , Hui-Jun Jin , Dong-Liang Luo , Yu Sheng , Jun Wen , Chien-Lu Ping , Mark H. Clark , Qiang Ma , Xiao-Ying Jin , Ji-Chun Wu , Yu-Zhong Yang , Qiang Li , Raul D. Şerban , Daqing Yang , Victor F. Bense , Qing-Bai Wu\",\"doi\":\"10.1016/j.accre.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ground freeze‒thaw processes have significant impacts on infiltration, runoff and evapotranspiration. However, there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions, especially of the interactions among permafrost, ecology, and hydrology. In this study, an alpine permafrost basin on the northeastern Qinghai‒Tibet Plateau was selected to conduct hydrological and meteorological observations. We analyzed the annual variations in runoff, precipitation, evapotranspiration, and changes in water storage, as well as the mechanisms for runoff generation in the basin from May 2014 to December 2015. The annual flow curve in the basin exhibited peaks both in spring and autumn floods. The high ratio of evapotranspiration to annual precipitation (>1.0) in the investigated wetland is mainly due to the considerably underestimated ‘observed’ precipitation caused by the wind-induced instrumental error and the neglect of snow sublimation. The stream flow from early May to late October probably came from the lateral discharge of subsurface flow in alpine wetlands. This study can provide data support and validation for hydrological model simulation and prediction, as well as water resource assessment, in the upper Yellow River Basin, especially for the headwater area. The results also provide case support for permafrost hydrology modeling in ungauged or poorly gauged watersheds in the High Mountain Asia.</div></div>\",\"PeriodicalId\":48628,\"journal\":{\"name\":\"Advances in Climate Change Research\",\"volume\":\"15 5\",\"pages\":\"Pages 830-844\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Climate Change Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674927824001473\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824001473","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Water budgets in an arid and alpine permafrost basin: Observations from the High Mountain Asia
Ground freeze‒thaw processes have significant impacts on infiltration, runoff and evapotranspiration. However, there are still critical knowledge gaps in understanding of hydrological processes in permafrost regions, especially of the interactions among permafrost, ecology, and hydrology. In this study, an alpine permafrost basin on the northeastern Qinghai‒Tibet Plateau was selected to conduct hydrological and meteorological observations. We analyzed the annual variations in runoff, precipitation, evapotranspiration, and changes in water storage, as well as the mechanisms for runoff generation in the basin from May 2014 to December 2015. The annual flow curve in the basin exhibited peaks both in spring and autumn floods. The high ratio of evapotranspiration to annual precipitation (>1.0) in the investigated wetland is mainly due to the considerably underestimated ‘observed’ precipitation caused by the wind-induced instrumental error and the neglect of snow sublimation. The stream flow from early May to late October probably came from the lateral discharge of subsurface flow in alpine wetlands. This study can provide data support and validation for hydrological model simulation and prediction, as well as water resource assessment, in the upper Yellow River Basin, especially for the headwater area. The results also provide case support for permafrost hydrology modeling in ungauged or poorly gauged watersheds in the High Mountain Asia.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.