厌氧消化物营养成分和腐殖质的价值评估

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Joni Lehto, Eliisa Järvelä
{"title":"厌氧消化物营养成分和腐殖质的价值评估","authors":"Joni Lehto,&nbsp;Eliisa Järvelä","doi":"10.1016/j.wasman.2024.11.033","DOIUrl":null,"url":null,"abstract":"<div><div>Nutrient-rich product fractions were produced from abundant, yet currently chemically under-utilized nutrients-containing feedstock, residual digestate formed during anaerobic digestion (AD). The objective of this research was to experiment individually three sub-processes, <em>i.e.,</em> precipitation of organic humic substances and phosphorus from the digestate reject water, liberation of reject water nitrogen as ammonia gas during the lime treatment and recovering it with membrane contactor (MC), and finally novel utilization of ammonia for leaching nitrogen-enriched organic substances from the digestate residue. With calcium precipitation, the main part of the phosphorus and significant part of organic material could be precipitated, and simultaneously ammonium could be liberated with good yield as ammonia gas, so that it could be recovered by MC. On the other hand, ammonia could be used with promising results as an extraction media, by which the solubility of the organic matter and the content of nitrogen attached to the soluble organic fraction could be significantly increased. Hence, all sub-processes were found to achieve their goals and digestate could be successfully utilized as a feedstock for manufacture of varying nutrient-rich products. Combining these three subprocesses together enables the development of novel cascading process concept, in which treated product stream can be used in the next process step and in which each subprocess step benefits the next.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"192 ","pages":"Pages 39-46"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valorisation of anaerobic digestate to nutrients and humic substances\",\"authors\":\"Joni Lehto,&nbsp;Eliisa Järvelä\",\"doi\":\"10.1016/j.wasman.2024.11.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nutrient-rich product fractions were produced from abundant, yet currently chemically under-utilized nutrients-containing feedstock, residual digestate formed during anaerobic digestion (AD). The objective of this research was to experiment individually three sub-processes, <em>i.e.,</em> precipitation of organic humic substances and phosphorus from the digestate reject water, liberation of reject water nitrogen as ammonia gas during the lime treatment and recovering it with membrane contactor (MC), and finally novel utilization of ammonia for leaching nitrogen-enriched organic substances from the digestate residue. With calcium precipitation, the main part of the phosphorus and significant part of organic material could be precipitated, and simultaneously ammonium could be liberated with good yield as ammonia gas, so that it could be recovered by MC. On the other hand, ammonia could be used with promising results as an extraction media, by which the solubility of the organic matter and the content of nitrogen attached to the soluble organic fraction could be significantly increased. Hence, all sub-processes were found to achieve their goals and digestate could be successfully utilized as a feedstock for manufacture of varying nutrient-rich products. Combining these three subprocesses together enables the development of novel cascading process concept, in which treated product stream can be used in the next process step and in which each subprocess step benefits the next.</div></div>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"192 \",\"pages\":\"Pages 39-46\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956053X24006007\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24006007","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

从厌氧发醇(AD)过程中形成的残余沼渣这一含有丰富营养物质但目前化学利用不足的原料中生产出了富含营养物质的产品馏分。这项研究的目的是对三个子过程进行单独试验,即从沼渣废水中沉淀有机腐殖质和磷,在石灰处理过程中以氨气形式释放废水中的氮,并用膜接触器(MC)将其回收,最后利用氨从沼渣残留物中浸出富氮有机物质。通过钙沉淀,可以沉淀大部分磷和相当一部分有机物,同时铵可以作为氨气以较高的产率释放出来,从而可以用 MC 进行回收。另一方面,氨气可用作萃取介质,从而显著提高有机物的溶解度和可溶性有机物中的氮含量,并取得了良好的效果。因此,所有子过程都能实现其目标,沼渣可成功用作生产各种富营养产品的原料。将这三个子过程结合在一起,可以开发出新颖的级联过程概念,其中经过处理的产品流可用于下一个过程步骤,而且每个子过程步骤都有利于下一个步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Valorisation of anaerobic digestate to nutrients and humic substances
Nutrient-rich product fractions were produced from abundant, yet currently chemically under-utilized nutrients-containing feedstock, residual digestate formed during anaerobic digestion (AD). The objective of this research was to experiment individually three sub-processes, i.e., precipitation of organic humic substances and phosphorus from the digestate reject water, liberation of reject water nitrogen as ammonia gas during the lime treatment and recovering it with membrane contactor (MC), and finally novel utilization of ammonia for leaching nitrogen-enriched organic substances from the digestate residue. With calcium precipitation, the main part of the phosphorus and significant part of organic material could be precipitated, and simultaneously ammonium could be liberated with good yield as ammonia gas, so that it could be recovered by MC. On the other hand, ammonia could be used with promising results as an extraction media, by which the solubility of the organic matter and the content of nitrogen attached to the soluble organic fraction could be significantly increased. Hence, all sub-processes were found to achieve their goals and digestate could be successfully utilized as a feedstock for manufacture of varying nutrient-rich products. Combining these three subprocesses together enables the development of novel cascading process concept, in which treated product stream can be used in the next process step and in which each subprocess step benefits the next.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信