驾驭复杂性:管理光谱数据建模中的多变量误差和不确定性

IF 11.8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Barbara Giussani , Giulia Gorla , Jokin Ezenarro , Jordi Riu , Ricard Boqué
{"title":"驾驭复杂性:管理光谱数据建模中的多变量误差和不确定性","authors":"Barbara Giussani ,&nbsp;Giulia Gorla ,&nbsp;Jokin Ezenarro ,&nbsp;Jordi Riu ,&nbsp;Ricard Boqué","doi":"10.1016/j.trac.2024.118051","DOIUrl":null,"url":null,"abstract":"<div><div>Spectroscopy and chemometrics, supported by computer science, have yielded promising outcomes, as evidenced by trends observed in literature searches. However, while researchers meticulously construct chemometric models for exploratory, quantitation and classification purposes, the investigation of data quality, particularly error analysis, remains less frequent. Understanding and quantifying measurement errors is crucial for robust spectroscopic modeling and uncertainty estimation. By unraveling complexities related to multivariate errors and uncertainties in spectroscopic data, the scientific community is empowered to extract reliable information from spectroscopic analyses, paving the way for enhanced analytical practices. This review underscores the necessity for the scientific community to integrate error analysis and uncertainty estimation into multivariate analysis methods, offering tailored solutions for diverse data types and analysis objectives.</div></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"181 ","pages":"Article 118051"},"PeriodicalIF":11.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating the complexity: Managing multivariate error and uncertainties in spectroscopic data modelling\",\"authors\":\"Barbara Giussani ,&nbsp;Giulia Gorla ,&nbsp;Jokin Ezenarro ,&nbsp;Jordi Riu ,&nbsp;Ricard Boqué\",\"doi\":\"10.1016/j.trac.2024.118051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spectroscopy and chemometrics, supported by computer science, have yielded promising outcomes, as evidenced by trends observed in literature searches. However, while researchers meticulously construct chemometric models for exploratory, quantitation and classification purposes, the investigation of data quality, particularly error analysis, remains less frequent. Understanding and quantifying measurement errors is crucial for robust spectroscopic modeling and uncertainty estimation. By unraveling complexities related to multivariate errors and uncertainties in spectroscopic data, the scientific community is empowered to extract reliable information from spectroscopic analyses, paving the way for enhanced analytical practices. This review underscores the necessity for the scientific community to integrate error analysis and uncertainty estimation into multivariate analysis methods, offering tailored solutions for diverse data types and analysis objectives.</div></div>\",\"PeriodicalId\":439,\"journal\":{\"name\":\"Trends in Analytical Chemistry\",\"volume\":\"181 \",\"pages\":\"Article 118051\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Analytical Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016599362400534X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016599362400534X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

光谱学和化学计量学在计算机科学的支持下取得了可喜的成果,文献检索中观察到的趋势就是证明。然而,虽然研究人员为探索、定量和分类目的精心构建了化学计量学模型,但对数据质量的调查,尤其是误差分析,仍然较少进行。了解和量化测量误差对于建立稳健的光谱模型和不确定性估计至关重要。通过揭示光谱数据中多元误差和不确定性的复杂性,科学界能够从光谱分析中提取可靠的信息,为改进分析实践铺平道路。本综述强调科学界有必要将误差分析和不确定性估计纳入多元分析方法,为不同的数据类型和分析目标提供量身定制的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navigating the complexity: Managing multivariate error and uncertainties in spectroscopic data modelling
Spectroscopy and chemometrics, supported by computer science, have yielded promising outcomes, as evidenced by trends observed in literature searches. However, while researchers meticulously construct chemometric models for exploratory, quantitation and classification purposes, the investigation of data quality, particularly error analysis, remains less frequent. Understanding and quantifying measurement errors is crucial for robust spectroscopic modeling and uncertainty estimation. By unraveling complexities related to multivariate errors and uncertainties in spectroscopic data, the scientific community is empowered to extract reliable information from spectroscopic analyses, paving the way for enhanced analytical practices. This review underscores the necessity for the scientific community to integrate error analysis and uncertainty estimation into multivariate analysis methods, offering tailored solutions for diverse data types and analysis objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Analytical Chemistry
Trends in Analytical Chemistry 化学-分析化学
CiteScore
20.00
自引率
4.60%
发文量
257
审稿时长
3.4 months
期刊介绍: TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信