基于振动的机器学习方法,用于检测生物质颗粒生产中的辊子间隙

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING
Mads Kjærgaard Nielsen , Simon Klinge Nielsen , Torben Tambo
{"title":"基于振动的机器学习方法,用于检测生物质颗粒生产中的辊子间隙","authors":"Mads Kjærgaard Nielsen ,&nbsp;Simon Klinge Nielsen ,&nbsp;Torben Tambo","doi":"10.1016/j.biosystemseng.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on optimising biomass pellet manufacturing processes by detecting roller gap variations in rotary ring die pelleting (RRDP) technology. Integrating experimental testing, response surface modelling (RSM), and vibration-based machine learning, this study aims to ensure optimal conditions for biomass pellet mill operation. Vibration-based machine learning techniques offer an approach for detecting roller gap variations, while RSM provides mathematical models to understand process dynamics for identifying optimisation criteria. Experimental testing explores the impact of process variables on pellet quality metrics. Results demonstrate machine learning model performance in detecting roller gap variations with F1-scores ranging from 88.1% to 100.0% across a pilot- and industrial-scaled setup. ANOVA results underscore significant relationships between roller gap, feedstock layer mass, and pelleting process metrics, while the created RSM models all have determination coefficients <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of <span><math><mrow><mo>≥</mo><mn>0.90</mn></mrow></math></span>. Overall, this comprehensive approach contributes valuable insights into optimising efficiency and product quality in the biomass industry through an integrated framework.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"248 ","pages":"Pages 283-296"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vibration-based machine learning approach for roller gap detection in biomass pellet production\",\"authors\":\"Mads Kjærgaard Nielsen ,&nbsp;Simon Klinge Nielsen ,&nbsp;Torben Tambo\",\"doi\":\"10.1016/j.biosystemseng.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research focuses on optimising biomass pellet manufacturing processes by detecting roller gap variations in rotary ring die pelleting (RRDP) technology. Integrating experimental testing, response surface modelling (RSM), and vibration-based machine learning, this study aims to ensure optimal conditions for biomass pellet mill operation. Vibration-based machine learning techniques offer an approach for detecting roller gap variations, while RSM provides mathematical models to understand process dynamics for identifying optimisation criteria. Experimental testing explores the impact of process variables on pellet quality metrics. Results demonstrate machine learning model performance in detecting roller gap variations with F1-scores ranging from 88.1% to 100.0% across a pilot- and industrial-scaled setup. ANOVA results underscore significant relationships between roller gap, feedstock layer mass, and pelleting process metrics, while the created RSM models all have determination coefficients <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of <span><math><mrow><mo>≥</mo><mn>0.90</mn></mrow></math></span>. Overall, this comprehensive approach contributes valuable insights into optimising efficiency and product quality in the biomass industry through an integrated framework.</div></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":\"248 \",\"pages\":\"Pages 283-296\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024002484\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024002484","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是通过检测旋转环模制粒(RRDP)技术中的辊子间隙变化来优化生物质颗粒生产工艺。本研究综合了实验测试、响应面建模(RSM)和基于振动的机器学习,旨在确保生物质颗粒机的最佳运行条件。基于振动的机器学习技术提供了一种检测辊子间隙变化的方法,而 RSM 则提供了数学模型来了解工艺动态,从而确定优化标准。实验测试探索了工艺变量对颗粒质量指标的影响。结果表明,机器学习模型在检测辊子间隙变化方面表现出色,中试和工业规模设置的 F1 分数从 88.1% 到 100.0%不等。方差分析结果表明,辊子间隙、原料层质量和造粒工艺指标之间存在显著关系,而创建的 RSM 模型的判定系数 R2 均≥0.90。总之,这种综合方法为通过综合框架优化生物质行业的效率和产品质量提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A vibration-based machine learning approach for roller gap detection in biomass pellet production
This research focuses on optimising biomass pellet manufacturing processes by detecting roller gap variations in rotary ring die pelleting (RRDP) technology. Integrating experimental testing, response surface modelling (RSM), and vibration-based machine learning, this study aims to ensure optimal conditions for biomass pellet mill operation. Vibration-based machine learning techniques offer an approach for detecting roller gap variations, while RSM provides mathematical models to understand process dynamics for identifying optimisation criteria. Experimental testing explores the impact of process variables on pellet quality metrics. Results demonstrate machine learning model performance in detecting roller gap variations with F1-scores ranging from 88.1% to 100.0% across a pilot- and industrial-scaled setup. ANOVA results underscore significant relationships between roller gap, feedstock layer mass, and pelleting process metrics, while the created RSM models all have determination coefficients R2 of 0.90. Overall, this comprehensive approach contributes valuable insights into optimising efficiency and product quality in the biomass industry through an integrated framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信