{"title":"具有成分梯度和区域化异质结构的陶瓷-金属复合材料的显著耐磨性","authors":"Guanyu He , Yilong Liang , Peng Chen","doi":"10.1016/j.triboint.2024.110407","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramic–metal composites undergo a predominant mode of wear failure known as brittle intergranular fracture caused by strain localization. In this work, we report for the first time the employment of heterostructures to alter the failure mode of frictional interfaces within such composites. We achieve this by integrating fine-grained tungsten carbide (WC)/graphene nanoplates (GNPs) into the surface layer of coarse-grained WC–11 wt%Co cemented carbides, constructing a gradient heterostructure that simultaneously possessed fine-grained, binder phase, GNPs composition gradients, and regionalized heterostructure of coarse and fine grains. This structure yielded extraordinary wear resistance, outperforming gradient-structured cemented carbides and decreasing the wear rate of the WC-11 wt% Co cemented carbides surface by an order of magnitude. The multi-typed gradient structure improved the resistance of the composite to frictional loads along with fracture resistance. During dry sliding, the heterostructure facilitated strain hardening and transfer by activating dislocations and stacking fault networks. Moreover, the pilling ups of high-density geometrically necessary dislocations of types <span><math><mrow><mfenced><mrow><mi>a</mi></mrow></mfenced></mrow></math></span>, <span><math><mrow><mfenced><mrow><mi>c</mi></mrow></mfenced></mrow></math></span>, and <span><math><mrow><mfenced><mrow><mi>a</mi><mo>+</mo><mi>c</mi></mrow></mfenced></mrow></math></span> within the constrained coarse-grained WC increased the strain tolerance and promoted plastic deformation uniformity. This synergistic effect enabled the frictional interface to accommodate elastoplastic deformation induced by frictional stresses, thereby preventing localized brittle fractures. The proposed approach paves a novel pathway for designing wear-resistant ceramic–metal composites.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"203 ","pages":"Article 110407"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarkable wear resistance in ceramic-metal composites with composition gradients and regionalized heterostructures\",\"authors\":\"Guanyu He , Yilong Liang , Peng Chen\",\"doi\":\"10.1016/j.triboint.2024.110407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ceramic–metal composites undergo a predominant mode of wear failure known as brittle intergranular fracture caused by strain localization. In this work, we report for the first time the employment of heterostructures to alter the failure mode of frictional interfaces within such composites. We achieve this by integrating fine-grained tungsten carbide (WC)/graphene nanoplates (GNPs) into the surface layer of coarse-grained WC–11 wt%Co cemented carbides, constructing a gradient heterostructure that simultaneously possessed fine-grained, binder phase, GNPs composition gradients, and regionalized heterostructure of coarse and fine grains. This structure yielded extraordinary wear resistance, outperforming gradient-structured cemented carbides and decreasing the wear rate of the WC-11 wt% Co cemented carbides surface by an order of magnitude. The multi-typed gradient structure improved the resistance of the composite to frictional loads along with fracture resistance. During dry sliding, the heterostructure facilitated strain hardening and transfer by activating dislocations and stacking fault networks. Moreover, the pilling ups of high-density geometrically necessary dislocations of types <span><math><mrow><mfenced><mrow><mi>a</mi></mrow></mfenced></mrow></math></span>, <span><math><mrow><mfenced><mrow><mi>c</mi></mrow></mfenced></mrow></math></span>, and <span><math><mrow><mfenced><mrow><mi>a</mi><mo>+</mo><mi>c</mi></mrow></mfenced></mrow></math></span> within the constrained coarse-grained WC increased the strain tolerance and promoted plastic deformation uniformity. This synergistic effect enabled the frictional interface to accommodate elastoplastic deformation induced by frictional stresses, thereby preventing localized brittle fractures. The proposed approach paves a novel pathway for designing wear-resistant ceramic–metal composites.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"203 \",\"pages\":\"Article 110407\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X24011599\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24011599","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Remarkable wear resistance in ceramic-metal composites with composition gradients and regionalized heterostructures
Ceramic–metal composites undergo a predominant mode of wear failure known as brittle intergranular fracture caused by strain localization. In this work, we report for the first time the employment of heterostructures to alter the failure mode of frictional interfaces within such composites. We achieve this by integrating fine-grained tungsten carbide (WC)/graphene nanoplates (GNPs) into the surface layer of coarse-grained WC–11 wt%Co cemented carbides, constructing a gradient heterostructure that simultaneously possessed fine-grained, binder phase, GNPs composition gradients, and regionalized heterostructure of coarse and fine grains. This structure yielded extraordinary wear resistance, outperforming gradient-structured cemented carbides and decreasing the wear rate of the WC-11 wt% Co cemented carbides surface by an order of magnitude. The multi-typed gradient structure improved the resistance of the composite to frictional loads along with fracture resistance. During dry sliding, the heterostructure facilitated strain hardening and transfer by activating dislocations and stacking fault networks. Moreover, the pilling ups of high-density geometrically necessary dislocations of types , , and within the constrained coarse-grained WC increased the strain tolerance and promoted plastic deformation uniformity. This synergistic effect enabled the frictional interface to accommodate elastoplastic deformation induced by frictional stresses, thereby preventing localized brittle fractures. The proposed approach paves a novel pathway for designing wear-resistant ceramic–metal composites.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.