Yi-Cheng Tsai , Yang-Sheng Shao , Chih-Hung Wang , Keng-Fu Hsu , Gwo-Bin Lee
{"title":"在剪切力控制集成微流控系统上优化叶酸受体α特异性抑制性适配体的筛选过程","authors":"Yi-Cheng Tsai , Yang-Sheng Shao , Chih-Hung Wang , Keng-Fu Hsu , Gwo-Bin Lee","doi":"10.1016/j.ceja.2024.100681","DOIUrl":null,"url":null,"abstract":"<div><div>Folate receptor alpha (FRα) has been regarded as a promising target for ovarian cancer (OvCa) therapy. This work focused on improving the identification of inhibitory aptamers that specifically target and block FRα. A new integrated microfluidic system (IMS) was designed to automate the entire systematic evolution of ligands by exponential enrichment (SELEX), precisely controlling the washing shear force from 62.7 nN to 451.7 nN that gradually washed away low-affinity aptamers, allowing high-affinity, high-specificity, single-stranded DNA aptamers to be screened within 15 h, which is significantly shorter than conventional process (weeks to months) while consuming 50 % less samples and reagents. Furthermore, screened aptamers significantly inhibited OvCa progression, achieving 20 % higher wound recovery in wound-healing tests when compared with an anti-cancer drug targeting FRα. In summary, precisely controlled shear force by IMS could optimize aptamers screening with high affinity/specificity towards FRα, which inhibited OvCa cell growth, suggesting their applicability as promising candidates for onco-therapy.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100681"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the screening process for inhibitory aptamers specific to folate receptor alpha on an integrated, shear force-controlling microfluidic system\",\"authors\":\"Yi-Cheng Tsai , Yang-Sheng Shao , Chih-Hung Wang , Keng-Fu Hsu , Gwo-Bin Lee\",\"doi\":\"10.1016/j.ceja.2024.100681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Folate receptor alpha (FRα) has been regarded as a promising target for ovarian cancer (OvCa) therapy. This work focused on improving the identification of inhibitory aptamers that specifically target and block FRα. A new integrated microfluidic system (IMS) was designed to automate the entire systematic evolution of ligands by exponential enrichment (SELEX), precisely controlling the washing shear force from 62.7 nN to 451.7 nN that gradually washed away low-affinity aptamers, allowing high-affinity, high-specificity, single-stranded DNA aptamers to be screened within 15 h, which is significantly shorter than conventional process (weeks to months) while consuming 50 % less samples and reagents. Furthermore, screened aptamers significantly inhibited OvCa progression, achieving 20 % higher wound recovery in wound-healing tests when compared with an anti-cancer drug targeting FRα. In summary, precisely controlled shear force by IMS could optimize aptamers screening with high affinity/specificity towards FRα, which inhibited OvCa cell growth, suggesting their applicability as promising candidates for onco-therapy.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"20 \",\"pages\":\"Article 100681\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266682112400098X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266682112400098X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Optimizing the screening process for inhibitory aptamers specific to folate receptor alpha on an integrated, shear force-controlling microfluidic system
Folate receptor alpha (FRα) has been regarded as a promising target for ovarian cancer (OvCa) therapy. This work focused on improving the identification of inhibitory aptamers that specifically target and block FRα. A new integrated microfluidic system (IMS) was designed to automate the entire systematic evolution of ligands by exponential enrichment (SELEX), precisely controlling the washing shear force from 62.7 nN to 451.7 nN that gradually washed away low-affinity aptamers, allowing high-affinity, high-specificity, single-stranded DNA aptamers to be screened within 15 h, which is significantly shorter than conventional process (weeks to months) while consuming 50 % less samples and reagents. Furthermore, screened aptamers significantly inhibited OvCa progression, achieving 20 % higher wound recovery in wound-healing tests when compared with an anti-cancer drug targeting FRα. In summary, precisely controlled shear force by IMS could optimize aptamers screening with high affinity/specificity towards FRα, which inhibited OvCa cell growth, suggesting their applicability as promising candidates for onco-therapy.