{"title":"不同 pH 值和浓度下鹰嘴豆蛋白质与咖啡酚的结合动力学和结构分析","authors":"Beyza Saricaoglu , Hilal Yılmaz , Busra Gultekin Subasi , Mohammad Amin Mohammadifar , Esra Capanoglu","doi":"10.1016/j.foostr.2024.100401","DOIUrl":null,"url":null,"abstract":"<div><div>Several studies have been performed to improve structural, nutritional and functional properties of proteins through protein-phenolic interactions. In this study, changes in the structure of chickpea protein following interaction with spent coffee phenolics were analyzed. Varying phenolic concentrations (0, 0.5, 1.0, and 1.5) and pH values (7.0 and 9.0) were examined to investigate the effect of different interaction conditions. The results indicated that spent coffee phenolics induced the secondary and tertiary structure of chickpea protein, and this change was affected by the phenolic concentration. The interaction with phenolic compounds resulted in a blue shift in the FTIR spectra in Amide A at both pH values. Chickpea protein isolate (CPI) reacted with phenolic compounds via C-N and N-H bonds and hydrogen bonds were built up between protein-phenolic complexes. Thermodynamic parameter calculations indicated that hydrogen bonding and van der Waals forces were the primary types of interactions between CPI and phenolic extract at both pH conditions (7.0 and 9.0). Besides, irregularity of shapes was observed in morphological analysis after protein-phenolic interaction. In addition to proven structural changes, this study has laid the basis for future studies investigating the effect of phenolics on the functional and nutritional properties of chickpea proteins.</div></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"42 ","pages":"Article 100401"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binding kinetics and structural analysis of chickpea protein interactions with spent coffee phenolics under varying pH and concentrations\",\"authors\":\"Beyza Saricaoglu , Hilal Yılmaz , Busra Gultekin Subasi , Mohammad Amin Mohammadifar , Esra Capanoglu\",\"doi\":\"10.1016/j.foostr.2024.100401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Several studies have been performed to improve structural, nutritional and functional properties of proteins through protein-phenolic interactions. In this study, changes in the structure of chickpea protein following interaction with spent coffee phenolics were analyzed. Varying phenolic concentrations (0, 0.5, 1.0, and 1.5) and pH values (7.0 and 9.0) were examined to investigate the effect of different interaction conditions. The results indicated that spent coffee phenolics induced the secondary and tertiary structure of chickpea protein, and this change was affected by the phenolic concentration. The interaction with phenolic compounds resulted in a blue shift in the FTIR spectra in Amide A at both pH values. Chickpea protein isolate (CPI) reacted with phenolic compounds via C-N and N-H bonds and hydrogen bonds were built up between protein-phenolic complexes. Thermodynamic parameter calculations indicated that hydrogen bonding and van der Waals forces were the primary types of interactions between CPI and phenolic extract at both pH conditions (7.0 and 9.0). Besides, irregularity of shapes was observed in morphological analysis after protein-phenolic interaction. In addition to proven structural changes, this study has laid the basis for future studies investigating the effect of phenolics on the functional and nutritional properties of chickpea proteins.</div></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"42 \",\"pages\":\"Article 100401\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329124000376\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329124000376","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Binding kinetics and structural analysis of chickpea protein interactions with spent coffee phenolics under varying pH and concentrations
Several studies have been performed to improve structural, nutritional and functional properties of proteins through protein-phenolic interactions. In this study, changes in the structure of chickpea protein following interaction with spent coffee phenolics were analyzed. Varying phenolic concentrations (0, 0.5, 1.0, and 1.5) and pH values (7.0 and 9.0) were examined to investigate the effect of different interaction conditions. The results indicated that spent coffee phenolics induced the secondary and tertiary structure of chickpea protein, and this change was affected by the phenolic concentration. The interaction with phenolic compounds resulted in a blue shift in the FTIR spectra in Amide A at both pH values. Chickpea protein isolate (CPI) reacted with phenolic compounds via C-N and N-H bonds and hydrogen bonds were built up between protein-phenolic complexes. Thermodynamic parameter calculations indicated that hydrogen bonding and van der Waals forces were the primary types of interactions between CPI and phenolic extract at both pH conditions (7.0 and 9.0). Besides, irregularity of shapes was observed in morphological analysis after protein-phenolic interaction. In addition to proven structural changes, this study has laid the basis for future studies investigating the effect of phenolics on the functional and nutritional properties of chickpea proteins.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.