各类模拟多重散射矩阵对散射介质中高分辨率成像数值模拟的影响分析

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ye-Ryoung Lee
{"title":"各类模拟多重散射矩阵对散射介质中高分辨率成像数值模拟的影响分析","authors":"Ye-Ryoung Lee","doi":"10.1016/j.cap.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>Optical techniques are essential in biomedical research, enabling high-resolution, non-invasive imaging of biological tissues. However, imaging depth in optical microscopy is limited by multiple scattering in scattering media, such as biological tissues. Various methods have been developed to overcome this limitation, and numerical simulations have played an important role in developing new imaging techniques. Traditional simulations often use simple random matrices to represent multiple-scattered waves, which overly simplifies their behavior and may impact the accuracy of image quality assessments. In this study, we introduce various types of simulated multiple scattering matrices to better capture the characteristics of scattered waves. We systematically analyze the correlation properties of these matrices and evaluate their impact on high-resolution imaging quality. This work provides a foundation for selecting appropriate matrix types for simulating multiple scattering effects, aiding in the effective testing and validation of new microscopy techniques in scattering media.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"70 ","pages":"Pages 21-26"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact analysis of various types of simulated multiple scattering matrices on the numerical simulation of high-resolution imaging in scattering media\",\"authors\":\"Ye-Ryoung Lee\",\"doi\":\"10.1016/j.cap.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optical techniques are essential in biomedical research, enabling high-resolution, non-invasive imaging of biological tissues. However, imaging depth in optical microscopy is limited by multiple scattering in scattering media, such as biological tissues. Various methods have been developed to overcome this limitation, and numerical simulations have played an important role in developing new imaging techniques. Traditional simulations often use simple random matrices to represent multiple-scattered waves, which overly simplifies their behavior and may impact the accuracy of image quality assessments. In this study, we introduce various types of simulated multiple scattering matrices to better capture the characteristics of scattered waves. We systematically analyze the correlation properties of these matrices and evaluate their impact on high-resolution imaging quality. This work provides a foundation for selecting appropriate matrix types for simulating multiple scattering effects, aiding in the effective testing and validation of new microscopy techniques in scattering media.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"70 \",\"pages\":\"Pages 21-26\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924002426\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002426","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光学技术在生物医学研究中至关重要,它能对生物组织进行高分辨率、非侵入式成像。然而,光学显微镜的成像深度受到生物组织等散射介质中多重散射的限制。为了克服这一限制,人们开发了各种方法,其中数值模拟在开发新的成像技术方面发挥了重要作用。传统的模拟通常使用简单的随机矩阵来表示多重散射波,这过于简化了多重散射波的行为,可能会影响图像质量评估的准确性。在本研究中,我们引入了各种类型的模拟多重散射矩阵,以更好地捕捉散射波的特征。我们系统地分析了这些矩阵的相关特性,并评估了它们对高分辨率成像质量的影响。这项工作为选择合适的矩阵类型来模拟多重散射效应奠定了基础,有助于在散射介质中有效测试和验证新的显微技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact analysis of various types of simulated multiple scattering matrices on the numerical simulation of high-resolution imaging in scattering media
Optical techniques are essential in biomedical research, enabling high-resolution, non-invasive imaging of biological tissues. However, imaging depth in optical microscopy is limited by multiple scattering in scattering media, such as biological tissues. Various methods have been developed to overcome this limitation, and numerical simulations have played an important role in developing new imaging techniques. Traditional simulations often use simple random matrices to represent multiple-scattered waves, which overly simplifies their behavior and may impact the accuracy of image quality assessments. In this study, we introduce various types of simulated multiple scattering matrices to better capture the characteristics of scattered waves. We systematically analyze the correlation properties of these matrices and evaluate their impact on high-resolution imaging quality. This work provides a foundation for selecting appropriate matrix types for simulating multiple scattering effects, aiding in the effective testing and validation of new microscopy techniques in scattering media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信