Xiangyu Liang , Xiaoshuai Wang , Zichen Cao , Jingwen Zhao , Yidan Fu , Lianzhou Jiang , Yan Zhang , Zejian Xu , Xiaonan Sui
{"title":"通过透析策略改善大豆蛋白淀粉样纤维的极酸性环境以提高凝胶性能:pH值和离子的影响","authors":"Xiangyu Liang , Xiaoshuai Wang , Zichen Cao , Jingwen Zhao , Yidan Fu , Lianzhou Jiang , Yan Zhang , Zejian Xu , Xiaonan Sui","doi":"10.1016/j.foodhyd.2024.110796","DOIUrl":null,"url":null,"abstract":"<div><div>The application of soy protein amyloid fibrils (SAFs) to food industrialization field has received focused attention because of their advantages such as ordered supramolecular structure and anti-proteolytic properties. However, the comparatively weak gelation properties of SAFs make it difficult to form self-supporting hydrogels, limiting its potential for future applications. Additionally, the extremely acidic environment (pH 2) of SAFs hinders their practical application in the food pH range (4–7). To address this issue, a dialysis strategy was utilized to enhance the gel structure of SAFs in this paper. The SAFs were dialyzed by deionized water and zinc ions solutions with four different pHs (2, 4, 7, and 9), and the impact of various dialysates on rheological properties, water distribution, and microstructure was investigated. The results demonstrated the method significantly improved gelation properties and modified the extremely acidic environment of SAFs. Various samples were continuously deacidified during dialysis in solutions of different pHs (4, 7, and 9), transforming from pH 2 to a higher pH value. Visual images exhibited that self-supporting hydrogels can be formed by SAFs just at a low concentration of 3% (wt). SAFs-Zn<sup>2+</sup>-9 hydrogel exhibited the highest storage modulus with a 500-fold compared to SAFs-2. Notably, the SAFs-H<sub>2</sub>O hydrogels were fabricated without any exogenous substances, in which the storage modulus of SAFs-H<sub>2</sub>O-9 increased by over 300 times. AFM images demonstrated that the shift from long rigid fibrils to short flexible fibrils induced tightly entanglement among fibrils, which improved gelation performance. Moreover, the transform in pH and the incorporation of ions caused the hydrogels to show dense network structure and strong water retention capacity. The ingenious insights were provided for improving the gelation performance of SAFs and modifying the polar acidic environment in the study, fully exploiting the potential of SAFs as edible ingredients for food applications.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110796"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amelioration of extremely acidic environment of soy protein amyloid fibrils to enhance gelation performance by dialysis strategy: Effects of pH and ions\",\"authors\":\"Xiangyu Liang , Xiaoshuai Wang , Zichen Cao , Jingwen Zhao , Yidan Fu , Lianzhou Jiang , Yan Zhang , Zejian Xu , Xiaonan Sui\",\"doi\":\"10.1016/j.foodhyd.2024.110796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The application of soy protein amyloid fibrils (SAFs) to food industrialization field has received focused attention because of their advantages such as ordered supramolecular structure and anti-proteolytic properties. However, the comparatively weak gelation properties of SAFs make it difficult to form self-supporting hydrogels, limiting its potential for future applications. Additionally, the extremely acidic environment (pH 2) of SAFs hinders their practical application in the food pH range (4–7). To address this issue, a dialysis strategy was utilized to enhance the gel structure of SAFs in this paper. The SAFs were dialyzed by deionized water and zinc ions solutions with four different pHs (2, 4, 7, and 9), and the impact of various dialysates on rheological properties, water distribution, and microstructure was investigated. The results demonstrated the method significantly improved gelation properties and modified the extremely acidic environment of SAFs. Various samples were continuously deacidified during dialysis in solutions of different pHs (4, 7, and 9), transforming from pH 2 to a higher pH value. Visual images exhibited that self-supporting hydrogels can be formed by SAFs just at a low concentration of 3% (wt). SAFs-Zn<sup>2+</sup>-9 hydrogel exhibited the highest storage modulus with a 500-fold compared to SAFs-2. Notably, the SAFs-H<sub>2</sub>O hydrogels were fabricated without any exogenous substances, in which the storage modulus of SAFs-H<sub>2</sub>O-9 increased by over 300 times. AFM images demonstrated that the shift from long rigid fibrils to short flexible fibrils induced tightly entanglement among fibrils, which improved gelation performance. Moreover, the transform in pH and the incorporation of ions caused the hydrogels to show dense network structure and strong water retention capacity. The ingenious insights were provided for improving the gelation performance of SAFs and modifying the polar acidic environment in the study, fully exploiting the potential of SAFs as edible ingredients for food applications.</div></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"160 \",\"pages\":\"Article 110796\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X24010701\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24010701","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Amelioration of extremely acidic environment of soy protein amyloid fibrils to enhance gelation performance by dialysis strategy: Effects of pH and ions
The application of soy protein amyloid fibrils (SAFs) to food industrialization field has received focused attention because of their advantages such as ordered supramolecular structure and anti-proteolytic properties. However, the comparatively weak gelation properties of SAFs make it difficult to form self-supporting hydrogels, limiting its potential for future applications. Additionally, the extremely acidic environment (pH 2) of SAFs hinders their practical application in the food pH range (4–7). To address this issue, a dialysis strategy was utilized to enhance the gel structure of SAFs in this paper. The SAFs were dialyzed by deionized water and zinc ions solutions with four different pHs (2, 4, 7, and 9), and the impact of various dialysates on rheological properties, water distribution, and microstructure was investigated. The results demonstrated the method significantly improved gelation properties and modified the extremely acidic environment of SAFs. Various samples were continuously deacidified during dialysis in solutions of different pHs (4, 7, and 9), transforming from pH 2 to a higher pH value. Visual images exhibited that self-supporting hydrogels can be formed by SAFs just at a low concentration of 3% (wt). SAFs-Zn2+-9 hydrogel exhibited the highest storage modulus with a 500-fold compared to SAFs-2. Notably, the SAFs-H2O hydrogels were fabricated without any exogenous substances, in which the storage modulus of SAFs-H2O-9 increased by over 300 times. AFM images demonstrated that the shift from long rigid fibrils to short flexible fibrils induced tightly entanglement among fibrils, which improved gelation performance. Moreover, the transform in pH and the incorporation of ions caused the hydrogels to show dense network structure and strong water retention capacity. The ingenious insights were provided for improving the gelation performance of SAFs and modifying the polar acidic environment in the study, fully exploiting the potential of SAFs as edible ingredients for food applications.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.