青藏高原冻土区现浇基脚的地温和变形监测

IF 6.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Chao-Wei Wang , Yan-Hui You , Bin Yao , Bin Liu , Pei-Heng Guo , Lei Guo , Xin-Bin Wang , Qi-Hao Yu
{"title":"青藏高原冻土区现浇基脚的地温和变形监测","authors":"Chao-Wei Wang ,&nbsp;Yan-Hui You ,&nbsp;Bin Yao ,&nbsp;Bin Liu ,&nbsp;Pei-Heng Guo ,&nbsp;Lei Guo ,&nbsp;Xin-Bin Wang ,&nbsp;Qi-Hao Yu","doi":"10.1016/j.accre.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>The long-term stability of the cast-in-place footings in permafrost regions has received much attention due to its climate sensitivity. The current research lacks long-term data validation, especially in the context of climate change. Based on the 13-year (2011–2023) temperature and deformation monitoring data from the Qinghai‒Tibet Power Transmission Line, this study investigates the characteristics of permafrost variation and its impact on the stability of tower footings under the cooling effect from thermosyphons. The results reveal that the thermosyphons effectively reduce the ground temperature around the footings. After the first freeze‒thaw cycle, the soil around the tower footings completed refreezing and maintained a frozen state. In the following 13 years, the ground temperature continued to decrease due to the cooling effect of thermosyphons. The duration notably exceeded the previously predicted 5 years. The temperature reduction at the base of the footings corresponded well with the frost jacking of the tower footings and could be divided into three distinct phases. In phase 1, the ground temperature around the footings rapidly reduced, approaching that of the natural field, while the footings experienced pronounced deformation. In phase 2, the ground temperature decreased at a faster rate, and the deformation rate of the footings slowed down. In phase 3, the frost jacking of the footings gradually retarded with the decrease in base temperature. Additionally, the ground temperature differences of over 1 °C were observed among different tower footings, which may lead to the differential deformation among the tower footings. The ground temperature differentiation is attributed to the difference in solar radiation intensity, which is shaded by the tower structure from different directions. This study provides theoretical support and empirical accumulation for the construction and maintenance of tower footings in permafrost regions.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 5","pages":"Pages 963-975"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring ground temperature and deformation of the cast-in-place footings in permafrost regions on the Qinghai‒Tibet Plateau\",\"authors\":\"Chao-Wei Wang ,&nbsp;Yan-Hui You ,&nbsp;Bin Yao ,&nbsp;Bin Liu ,&nbsp;Pei-Heng Guo ,&nbsp;Lei Guo ,&nbsp;Xin-Bin Wang ,&nbsp;Qi-Hao Yu\",\"doi\":\"10.1016/j.accre.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The long-term stability of the cast-in-place footings in permafrost regions has received much attention due to its climate sensitivity. The current research lacks long-term data validation, especially in the context of climate change. Based on the 13-year (2011–2023) temperature and deformation monitoring data from the Qinghai‒Tibet Power Transmission Line, this study investigates the characteristics of permafrost variation and its impact on the stability of tower footings under the cooling effect from thermosyphons. The results reveal that the thermosyphons effectively reduce the ground temperature around the footings. After the first freeze‒thaw cycle, the soil around the tower footings completed refreezing and maintained a frozen state. In the following 13 years, the ground temperature continued to decrease due to the cooling effect of thermosyphons. The duration notably exceeded the previously predicted 5 years. The temperature reduction at the base of the footings corresponded well with the frost jacking of the tower footings and could be divided into three distinct phases. In phase 1, the ground temperature around the footings rapidly reduced, approaching that of the natural field, while the footings experienced pronounced deformation. In phase 2, the ground temperature decreased at a faster rate, and the deformation rate of the footings slowed down. In phase 3, the frost jacking of the footings gradually retarded with the decrease in base temperature. Additionally, the ground temperature differences of over 1 °C were observed among different tower footings, which may lead to the differential deformation among the tower footings. The ground temperature differentiation is attributed to the difference in solar radiation intensity, which is shaded by the tower structure from different directions. This study provides theoretical support and empirical accumulation for the construction and maintenance of tower footings in permafrost regions.</div></div>\",\"PeriodicalId\":48628,\"journal\":{\"name\":\"Advances in Climate Change Research\",\"volume\":\"15 5\",\"pages\":\"Pages 963-975\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Climate Change Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674927824001151\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824001151","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

永久冻土地区现浇基脚的长期稳定性因其对气候的敏感性而备受关注。目前的研究缺乏长期数据验证,尤其是在气候变化的背景下。本研究基于青藏输电线路 13 年(2011-2023 年)的温度和变形监测数据,研究了在热流降温作用下冻土的变化特征及其对塔基稳定性的影响。研究结果表明,热喷器可有效降低塔基周围的地温。在第一个冻融循环之后,塔基周围的土壤完成了再冻结并保持了冻结状态。在随后的 13 年中,由于热沉的冷却作用,地面温度持续下降。持续时间明显超过了之前预测的 5 年。基脚底部温度的降低与塔基的冻胀非常吻合,可分为三个不同的阶段。在第 1 阶段,基脚周围的地温迅速降低,接近自然地温,同时基脚发生明显变形。在第 2 阶段,地温下降速度加快,基脚变形速度减慢。在第 3 阶段,随着基底温度的降低,基底的冻胀逐渐减弱。此外,不同塔基之间的地温差超过 1 °C,这可能导致塔基之间的变形差异。地温差异归因于太阳辐射强度的不同,塔基结构从不同方向遮挡了太阳辐射强度。这项研究为永冻土地区塔基的施工和维护提供了理论支持和经验积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring ground temperature and deformation of the cast-in-place footings in permafrost regions on the Qinghai‒Tibet Plateau
The long-term stability of the cast-in-place footings in permafrost regions has received much attention due to its climate sensitivity. The current research lacks long-term data validation, especially in the context of climate change. Based on the 13-year (2011–2023) temperature and deformation monitoring data from the Qinghai‒Tibet Power Transmission Line, this study investigates the characteristics of permafrost variation and its impact on the stability of tower footings under the cooling effect from thermosyphons. The results reveal that the thermosyphons effectively reduce the ground temperature around the footings. After the first freeze‒thaw cycle, the soil around the tower footings completed refreezing and maintained a frozen state. In the following 13 years, the ground temperature continued to decrease due to the cooling effect of thermosyphons. The duration notably exceeded the previously predicted 5 years. The temperature reduction at the base of the footings corresponded well with the frost jacking of the tower footings and could be divided into three distinct phases. In phase 1, the ground temperature around the footings rapidly reduced, approaching that of the natural field, while the footings experienced pronounced deformation. In phase 2, the ground temperature decreased at a faster rate, and the deformation rate of the footings slowed down. In phase 3, the frost jacking of the footings gradually retarded with the decrease in base temperature. Additionally, the ground temperature differences of over 1 °C were observed among different tower footings, which may lead to the differential deformation among the tower footings. The ground temperature differentiation is attributed to the difference in solar radiation intensity, which is shaded by the tower structure from different directions. This study provides theoretical support and empirical accumulation for the construction and maintenance of tower footings in permafrost regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Climate Change Research
Advances in Climate Change Research Earth and Planetary Sciences-Atmospheric Science
CiteScore
9.80
自引率
4.10%
发文量
424
审稿时长
107 days
期刊介绍: Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change. Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信