温斯坦热变换的图像特征

IF 1.2 3区 数学 Q1 MATHEMATICS
Nour Eddine Askour, Abdelilah El mourni, Imane El yazidi
{"title":"温斯坦热变换的图像特征","authors":"Nour Eddine Askour,&nbsp;Abdelilah El mourni,&nbsp;Imane El yazidi","doi":"10.1016/j.jmaa.2024.129050","DOIUrl":null,"url":null,"abstract":"<div><div>Based on reproducing kernel Hilbert space theory, this paper describes a result characterizing the image time-<em>t</em> heat transform associated with the Weinstein-Laplacian operator on half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>:</mo><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. The guiding principle behind characterization is this: the functions in the image of the heat transform should be those functions having an analytic continuation to the complex space <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, that are even in the last variable and that possess an appropriate <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-finite norm. Furthermore, we prove that the associated Bargmann transform with this heat transform is an isometric isomorphism (we referred to here as the Weinstein-Bargmann transform) for which we compute the inverse in an explicit form.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129050"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The characterization of the image for the Weinstein heat transform\",\"authors\":\"Nour Eddine Askour,&nbsp;Abdelilah El mourni,&nbsp;Imane El yazidi\",\"doi\":\"10.1016/j.jmaa.2024.129050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on reproducing kernel Hilbert space theory, this paper describes a result characterizing the image time-<em>t</em> heat transform associated with the Weinstein-Laplacian operator on half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>:</mo><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. The guiding principle behind characterization is this: the functions in the image of the heat transform should be those functions having an analytic continuation to the complex space <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, that are even in the last variable and that possess an appropriate <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-finite norm. Furthermore, we prove that the associated Bargmann transform with this heat transform is an isometric isomorphism (we referred to here as the Weinstein-Bargmann transform) for which we compute the inverse in an explicit form.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"544 2\",\"pages\":\"Article 129050\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009727\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009727","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文以重现核希尔伯特空间理论为基础,描述了与半空间 R+d+1:=Rd×R+⁎ 上的韦恩斯坦-拉普拉斯算子相关的图像时间-t 热变换的表征结果。表征背后的指导原则是:热变换图像中的函数应该是那些对复数空间 Cd+1 有解析延续的函数,它们在最后一个变量中是偶数,并且具有适当的 L2 有限规范。此外,我们还证明了与这一热变换相关的巴格曼变换是一个等距同构(我们在此称为韦恩斯坦-巴格曼变换),我们以明确的形式计算了其逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The characterization of the image for the Weinstein heat transform
Based on reproducing kernel Hilbert space theory, this paper describes a result characterizing the image time-t heat transform associated with the Weinstein-Laplacian operator on half-space R+d+1:=Rd×R+. The guiding principle behind characterization is this: the functions in the image of the heat transform should be those functions having an analytic continuation to the complex space Cd+1, that are even in the last variable and that possess an appropriate L2-finite norm. Furthermore, we prove that the associated Bargmann transform with this heat transform is an isometric isomorphism (we referred to here as the Weinstein-Bargmann transform) for which we compute the inverse in an explicit form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信