Nour Eddine Askour, Abdelilah El mourni, Imane El yazidi
{"title":"温斯坦热变换的图像特征","authors":"Nour Eddine Askour, Abdelilah El mourni, Imane El yazidi","doi":"10.1016/j.jmaa.2024.129050","DOIUrl":null,"url":null,"abstract":"<div><div>Based on reproducing kernel Hilbert space theory, this paper describes a result characterizing the image time-<em>t</em> heat transform associated with the Weinstein-Laplacian operator on half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>:</mo><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. The guiding principle behind characterization is this: the functions in the image of the heat transform should be those functions having an analytic continuation to the complex space <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, that are even in the last variable and that possess an appropriate <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-finite norm. Furthermore, we prove that the associated Bargmann transform with this heat transform is an isometric isomorphism (we referred to here as the Weinstein-Bargmann transform) for which we compute the inverse in an explicit form.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129050"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The characterization of the image for the Weinstein heat transform\",\"authors\":\"Nour Eddine Askour, Abdelilah El mourni, Imane El yazidi\",\"doi\":\"10.1016/j.jmaa.2024.129050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on reproducing kernel Hilbert space theory, this paper describes a result characterizing the image time-<em>t</em> heat transform associated with the Weinstein-Laplacian operator on half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>:</mo><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. The guiding principle behind characterization is this: the functions in the image of the heat transform should be those functions having an analytic continuation to the complex space <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, that are even in the last variable and that possess an appropriate <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-finite norm. Furthermore, we prove that the associated Bargmann transform with this heat transform is an isometric isomorphism (we referred to here as the Weinstein-Bargmann transform) for which we compute the inverse in an explicit form.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"544 2\",\"pages\":\"Article 129050\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009727\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009727","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The characterization of the image for the Weinstein heat transform
Based on reproducing kernel Hilbert space theory, this paper describes a result characterizing the image time-t heat transform associated with the Weinstein-Laplacian operator on half-space . The guiding principle behind characterization is this: the functions in the image of the heat transform should be those functions having an analytic continuation to the complex space , that are even in the last variable and that possess an appropriate -finite norm. Furthermore, we prove that the associated Bargmann transform with this heat transform is an isometric isomorphism (we referred to here as the Weinstein-Bargmann transform) for which we compute the inverse in an explicit form.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.