同震滑移优化控制问题的先验误差估计

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Jorge Aguayo , Rodolfo Araya
{"title":"同震滑移优化控制问题的先验误差估计","authors":"Jorge Aguayo ,&nbsp;Rodolfo Araya","doi":"10.1016/j.apnum.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents an a priori error estimation for a finite element discretization applied to an optimal control problem governed by a mixed formulation for linear elasticity equations, where weak symmetry is imposed for the stress tensor. The optimal control is given by a discontinuity jump in displacements, representing the coseismic slip along a fault plane. Inferring the fault slip during an earthquake is crucial for understanding earthquake dynamics and improving seismic risk mitigation strategies, making this optimal control problem scientifically significant. We establish an a priori error estimate using appropriate finite element spaces for control and states. Our theoretical convergence rates were validated through numerical experiments.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"209 ","pages":"Pages 84-99"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori error estimates for a coseismic slip optimal control problem\",\"authors\":\"Jorge Aguayo ,&nbsp;Rodolfo Araya\",\"doi\":\"10.1016/j.apnum.2024.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents an a priori error estimation for a finite element discretization applied to an optimal control problem governed by a mixed formulation for linear elasticity equations, where weak symmetry is imposed for the stress tensor. The optimal control is given by a discontinuity jump in displacements, representing the coseismic slip along a fault plane. Inferring the fault slip during an earthquake is crucial for understanding earthquake dynamics and improving seismic risk mitigation strategies, making this optimal control problem scientifically significant. We establish an a priori error estimate using appropriate finite element spaces for control and states. Our theoretical convergence rates were validated through numerical experiments.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"209 \",\"pages\":\"Pages 84-99\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424003192\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424003192","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了应用于线性弹性方程混合表述的最优控制问题的有限元离散化的先验误差估计,其中对应力张量施加了弱对称性。最优控制由位移的不连续跳跃给出,代表沿断层面的共震滑移。推断地震期间的断层滑移对于理解地震动力学和改进地震风险缓解策略至关重要,因此这一最优控制问题具有重要的科学意义。我们利用适当的有限元空间为控制和状态建立了先验误差估计。我们的理论收敛率通过数值实验得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A priori error estimates for a coseismic slip optimal control problem
This article presents an a priori error estimation for a finite element discretization applied to an optimal control problem governed by a mixed formulation for linear elasticity equations, where weak symmetry is imposed for the stress tensor. The optimal control is given by a discontinuity jump in displacements, representing the coseismic slip along a fault plane. Inferring the fault slip during an earthquake is crucial for understanding earthquake dynamics and improving seismic risk mitigation strategies, making this optimal control problem scientifically significant. We establish an a priori error estimate using appropriate finite element spaces for control and states. Our theoretical convergence rates were validated through numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信