具有可变密度和退化流动性的卡恩-希利亚德-纳维尔-斯托克斯模型的保属性数值逼近

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Daniel Acosta-Soba , Francisco Guillén-González , J. Rafael Rodríguez-Galván , Jin Wang
{"title":"具有可变密度和退化流动性的卡恩-希利亚德-纳维尔-斯托克斯模型的保属性数值逼近","authors":"Daniel Acosta-Soba ,&nbsp;Francisco Guillén-González ,&nbsp;J. Rafael Rodríguez-Galván ,&nbsp;Jin Wang","doi":"10.1016/j.apnum.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a new computational framework to approximate a Cahn–Hilliard–Navier–Stokes model with variable density and degenerate mobility that preserves the mass of the mixture, the pointwise bounds of the density and the decreasing energy. This numerical scheme is based on a finite element approximation for the Navier–Stokes fluid flow with discontinuous pressure and an upwind discontinuous Galerkin scheme for the Cahn–Hilliard part. Finally, several numerical experiments such as a convergence test and some well-known benchmark problems are conducted.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"209 ","pages":"Pages 68-83"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Property-preserving numerical approximation of a Cahn–Hilliard–Navier–Stokes model with variable density and degenerate mobility\",\"authors\":\"Daniel Acosta-Soba ,&nbsp;Francisco Guillén-González ,&nbsp;J. Rafael Rodríguez-Galván ,&nbsp;Jin Wang\",\"doi\":\"10.1016/j.apnum.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present a new computational framework to approximate a Cahn–Hilliard–Navier–Stokes model with variable density and degenerate mobility that preserves the mass of the mixture, the pointwise bounds of the density and the decreasing energy. This numerical scheme is based on a finite element approximation for the Navier–Stokes fluid flow with discontinuous pressure and an upwind discontinuous Galerkin scheme for the Cahn–Hilliard part. Finally, several numerical experiments such as a convergence test and some well-known benchmark problems are conducted.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"209 \",\"pages\":\"Pages 68-83\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424003027\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424003027","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的计算框架,用于近似具有可变密度和退化流动性的卡恩-希利亚德-纳维尔-斯托克斯模型,该框架保留了混合物的质量、密度的点式边界和递减能量。该数值方案基于对具有不连续压力的纳维-斯托克斯流体流的有限元近似和对卡恩-希利亚德部分的上风不连续伽勒金方案。最后,还进行了一些数值实验,如收敛性测试和一些著名的基准问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Property-preserving numerical approximation of a Cahn–Hilliard–Navier–Stokes model with variable density and degenerate mobility
In this paper, we present a new computational framework to approximate a Cahn–Hilliard–Navier–Stokes model with variable density and degenerate mobility that preserves the mass of the mixture, the pointwise bounds of the density and the decreasing energy. This numerical scheme is based on a finite element approximation for the Navier–Stokes fluid flow with discontinuous pressure and an upwind discontinuous Galerkin scheme for the Cahn–Hilliard part. Finally, several numerical experiments such as a convergence test and some well-known benchmark problems are conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信