冲击拉伸加载下超弹性 SMA 中相变前沿传播的分析模型

IF 3.4 3区 工程技术 Q1 MECHANICS
Y. Wang , B. Hou , S. Roux , H. Zhao
{"title":"冲击拉伸加载下超弹性 SMA 中相变前沿传播的分析模型","authors":"Y. Wang ,&nbsp;B. Hou ,&nbsp;S. Roux ,&nbsp;H. Zhao","doi":"10.1016/j.ijsolstr.2024.113151","DOIUrl":null,"url":null,"abstract":"<div><div>Shape-memory alloys (SMAs) exhibit superelastic behavior due to reversible phase transformations. Under dynamic (impact) loading, phase transformation is experimentally observed to occur along a band whose front propagates throughout the specimen. However, unlike the static case, the nucleation and propagation of these bands require further understanding. Recently, a Finite Element Method (FEM) simulation based on Thamburaja and Nikabdullah’s constitutive model successfully reproduced the experimental observations. In this study, the model is revisited in the specific case of a one-dimensional dynamic tension test, which allows for the derivation of an analytical closed-form one-dimensional stress–strain relation. When compared to FEM simulations of a single element, this analytical solution shows excellent agreement. From this closed form stress–strain relation, the propagation speed of the phase transformation shock front can be analytically computed. It also highlights that the shock front speed is primarily controlled by the strain reached after the complete transformation from the Austenite to the Martensite phase.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"308 ","pages":"Article 113151"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical model for the phase transformation front propagation in superelastic SMA under impact tensile loading\",\"authors\":\"Y. Wang ,&nbsp;B. Hou ,&nbsp;S. Roux ,&nbsp;H. Zhao\",\"doi\":\"10.1016/j.ijsolstr.2024.113151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Shape-memory alloys (SMAs) exhibit superelastic behavior due to reversible phase transformations. Under dynamic (impact) loading, phase transformation is experimentally observed to occur along a band whose front propagates throughout the specimen. However, unlike the static case, the nucleation and propagation of these bands require further understanding. Recently, a Finite Element Method (FEM) simulation based on Thamburaja and Nikabdullah’s constitutive model successfully reproduced the experimental observations. In this study, the model is revisited in the specific case of a one-dimensional dynamic tension test, which allows for the derivation of an analytical closed-form one-dimensional stress–strain relation. When compared to FEM simulations of a single element, this analytical solution shows excellent agreement. From this closed form stress–strain relation, the propagation speed of the phase transformation shock front can be analytically computed. It also highlights that the shock front speed is primarily controlled by the strain reached after the complete transformation from the Austenite to the Martensite phase.</div></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"308 \",\"pages\":\"Article 113151\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324005109\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324005109","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

形状记忆合金(SMA)因可逆相变而表现出超弹性行为。在动态(冲击)加载条件下,实验观察到相变沿着一条带发生,其前沿在整个试样中传播。然而,与静态情况不同,这些带的成核和传播需要进一步了解。最近,基于 Thamburaja 和 Nikabdullah 构成模型的有限元法(FEM)模拟成功地再现了实验观察结果。在本研究中,我们在一维动态拉伸试验的特定情况下重新审视了该模型,从而可以推导出封闭形式的一维应力-应变分析关系。与单个元素的有限元模拟相比,该分析解决方案显示出极佳的一致性。根据这一封闭式应力应变关系,可以分析计算出相变冲击前沿的传播速度。它还突出表明,冲击前沿速度主要受奥氏体向马氏体相完全转变后所达到的应变控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An analytical model for the phase transformation front propagation in superelastic SMA under impact tensile loading

An analytical model for the phase transformation front propagation in superelastic SMA under impact tensile loading
Shape-memory alloys (SMAs) exhibit superelastic behavior due to reversible phase transformations. Under dynamic (impact) loading, phase transformation is experimentally observed to occur along a band whose front propagates throughout the specimen. However, unlike the static case, the nucleation and propagation of these bands require further understanding. Recently, a Finite Element Method (FEM) simulation based on Thamburaja and Nikabdullah’s constitutive model successfully reproduced the experimental observations. In this study, the model is revisited in the specific case of a one-dimensional dynamic tension test, which allows for the derivation of an analytical closed-form one-dimensional stress–strain relation. When compared to FEM simulations of a single element, this analytical solution shows excellent agreement. From this closed form stress–strain relation, the propagation speed of the phase transformation shock front can be analytically computed. It also highlights that the shock front speed is primarily controlled by the strain reached after the complete transformation from the Austenite to the Martensite phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信