Ling-Yu Meng , Zhan Tian , Dong-Li Fan , Frans H.M. van de Ven , Laixiang Sun , Qing-Hua Ye , San-Xiang Sun , Jun-Guo Liu , Laura Nougues , Daan Rooze
{"title":"在不断变化的气候中利用雨水的多目标优化方法","authors":"Ling-Yu Meng , Zhan Tian , Dong-Li Fan , Frans H.M. van de Ven , Laixiang Sun , Qing-Hua Ye , San-Xiang Sun , Jun-Guo Liu , Laura Nougues , Daan Rooze","doi":"10.1016/j.accre.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>As the world grapples with the profound impacts of climate change, water scarcity has become a pressing issue. However, there is a shortage of in-depth research on the trade-offs between water resource dependence and the economic, ecological, and social needs of arid and semi-arid regions like Lanzhou, China. Flower cultivation in Lanzhou relies heavily on the Yellow River, often overlooking the potential of natural rainfall. Here we first calibrated a water balance model through artificial precipitation experiments in a Soil and Water Conservation Demonstration Park in Lanzhou. We then developed a multi-objective optimization model to balance the cost-benefit considerations of various plausible measures across economic, ecological, and social dimensions in the searching for solutions that are more adaptable to climate change and local development needs. Model simulations show that the solutions we designed can effectively manage water-shortage days, significantly reduce Yellow River water extraction, and improve cost-effectiveness, meeting 66%–80% of water needs for flower cultivation in the studied park. The findings highlight the potential of rainwater collection and utilization solutions to mitigate water scarcity in arid and semi-arid cities, thereby enriching water resource management.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 5","pages":"Pages 976-987"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-objective optimization approach for harnessing rainwater in changing climate\",\"authors\":\"Ling-Yu Meng , Zhan Tian , Dong-Li Fan , Frans H.M. van de Ven , Laixiang Sun , Qing-Hua Ye , San-Xiang Sun , Jun-Guo Liu , Laura Nougues , Daan Rooze\",\"doi\":\"10.1016/j.accre.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the world grapples with the profound impacts of climate change, water scarcity has become a pressing issue. However, there is a shortage of in-depth research on the trade-offs between water resource dependence and the economic, ecological, and social needs of arid and semi-arid regions like Lanzhou, China. Flower cultivation in Lanzhou relies heavily on the Yellow River, often overlooking the potential of natural rainfall. Here we first calibrated a water balance model through artificial precipitation experiments in a Soil and Water Conservation Demonstration Park in Lanzhou. We then developed a multi-objective optimization model to balance the cost-benefit considerations of various plausible measures across economic, ecological, and social dimensions in the searching for solutions that are more adaptable to climate change and local development needs. Model simulations show that the solutions we designed can effectively manage water-shortage days, significantly reduce Yellow River water extraction, and improve cost-effectiveness, meeting 66%–80% of water needs for flower cultivation in the studied park. The findings highlight the potential of rainwater collection and utilization solutions to mitigate water scarcity in arid and semi-arid cities, thereby enriching water resource management.</div></div>\",\"PeriodicalId\":48628,\"journal\":{\"name\":\"Advances in Climate Change Research\",\"volume\":\"15 5\",\"pages\":\"Pages 976-987\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Climate Change Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674927824001199\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824001199","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A multi-objective optimization approach for harnessing rainwater in changing climate
As the world grapples with the profound impacts of climate change, water scarcity has become a pressing issue. However, there is a shortage of in-depth research on the trade-offs between water resource dependence and the economic, ecological, and social needs of arid and semi-arid regions like Lanzhou, China. Flower cultivation in Lanzhou relies heavily on the Yellow River, often overlooking the potential of natural rainfall. Here we first calibrated a water balance model through artificial precipitation experiments in a Soil and Water Conservation Demonstration Park in Lanzhou. We then developed a multi-objective optimization model to balance the cost-benefit considerations of various plausible measures across economic, ecological, and social dimensions in the searching for solutions that are more adaptable to climate change and local development needs. Model simulations show that the solutions we designed can effectively manage water-shortage days, significantly reduce Yellow River water extraction, and improve cost-effectiveness, meeting 66%–80% of water needs for flower cultivation in the studied park. The findings highlight the potential of rainwater collection and utilization solutions to mitigate water scarcity in arid and semi-arid cities, thereby enriching water resource management.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.