Yang Zhou , Zhenzhu xia , Frank Peprah Addai , Jinping Chen , Chengxiang Feng , Zongjian Zhen , Juan Han , Feng Lin , Zhirong Wang , Yun Wang
{"title":"作为脂肪酶固定化固体平台的分层有序截短单晶介孔 ZIF-8","authors":"Yang Zhou , Zhenzhu xia , Frank Peprah Addai , Jinping Chen , Chengxiang Feng , Zongjian Zhen , Juan Han , Feng Lin , Zhirong Wang , Yun Wang","doi":"10.1016/j.micromeso.2024.113430","DOIUrl":null,"url":null,"abstract":"<div><div>Most pristine metal organic frameworks (MOFs) are inherently microporous. To introduce desired porosity for easy enzyme infiltration and immobilization, polystyrene spheres was used as sacrificial template to design hierarchical ordered micro-mesoporous truncated single-crystalline ZIF-8 (SOM-ZIF-8). The surface area and pore diameter of the SOM-ZIF-8 were 821 m<sup>2</sup>/g and 7.09 nm which changed to 669 m<sup>2</sup>/g and 4.98 nm respectively, after lipase immobilization, suggesting the pores and surface of the SOM-ZIF-8 served as binding sites for the enzyme, and could reach a loading capacity of 134 mg/g after 24 h. The optimal conditions for achieving maximum lipase activity for free LipaseELP, ZIF-8@LipaseELP and SOM-ZIF-8@LipaseELP were pH 7.8 at 45 °C, and maintained 33.67 %, 45.6 % and 57.78 % residual activity after incubation at 80 °C for 2 h. The specific activity towards tributyrin and p-nitrophenyl acetate were observed to be SOM-ZIF-8@LipaseELP (0.25 and 45.85 U/mg) compared to ZIF-8@LipaseELP (0.211 and 43.62 U/mg) and LipaseELP (0.179 and 41.09 U/mg) respectively. The SOM-ZIF-8@LipaseELP could further be recovered and reused for 9 rounds while maintaining 73.8 % of its original activity. This study demonstrates that introducing mesoporous structures into ZIF-8 could improve its binding enzyme property for enhanced hydrolytic function.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"384 ","pages":"Article 113430"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchically ordered truncated single crystal mesoporous ZIF-8 as a solid platform for lipase immobilization\",\"authors\":\"Yang Zhou , Zhenzhu xia , Frank Peprah Addai , Jinping Chen , Chengxiang Feng , Zongjian Zhen , Juan Han , Feng Lin , Zhirong Wang , Yun Wang\",\"doi\":\"10.1016/j.micromeso.2024.113430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most pristine metal organic frameworks (MOFs) are inherently microporous. To introduce desired porosity for easy enzyme infiltration and immobilization, polystyrene spheres was used as sacrificial template to design hierarchical ordered micro-mesoporous truncated single-crystalline ZIF-8 (SOM-ZIF-8). The surface area and pore diameter of the SOM-ZIF-8 were 821 m<sup>2</sup>/g and 7.09 nm which changed to 669 m<sup>2</sup>/g and 4.98 nm respectively, after lipase immobilization, suggesting the pores and surface of the SOM-ZIF-8 served as binding sites for the enzyme, and could reach a loading capacity of 134 mg/g after 24 h. The optimal conditions for achieving maximum lipase activity for free LipaseELP, ZIF-8@LipaseELP and SOM-ZIF-8@LipaseELP were pH 7.8 at 45 °C, and maintained 33.67 %, 45.6 % and 57.78 % residual activity after incubation at 80 °C for 2 h. The specific activity towards tributyrin and p-nitrophenyl acetate were observed to be SOM-ZIF-8@LipaseELP (0.25 and 45.85 U/mg) compared to ZIF-8@LipaseELP (0.211 and 43.62 U/mg) and LipaseELP (0.179 and 41.09 U/mg) respectively. The SOM-ZIF-8@LipaseELP could further be recovered and reused for 9 rounds while maintaining 73.8 % of its original activity. This study demonstrates that introducing mesoporous structures into ZIF-8 could improve its binding enzyme property for enhanced hydrolytic function.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"384 \",\"pages\":\"Article 113430\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124004529\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124004529","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Hierarchically ordered truncated single crystal mesoporous ZIF-8 as a solid platform for lipase immobilization
Most pristine metal organic frameworks (MOFs) are inherently microporous. To introduce desired porosity for easy enzyme infiltration and immobilization, polystyrene spheres was used as sacrificial template to design hierarchical ordered micro-mesoporous truncated single-crystalline ZIF-8 (SOM-ZIF-8). The surface area and pore diameter of the SOM-ZIF-8 were 821 m2/g and 7.09 nm which changed to 669 m2/g and 4.98 nm respectively, after lipase immobilization, suggesting the pores and surface of the SOM-ZIF-8 served as binding sites for the enzyme, and could reach a loading capacity of 134 mg/g after 24 h. The optimal conditions for achieving maximum lipase activity for free LipaseELP, ZIF-8@LipaseELP and SOM-ZIF-8@LipaseELP were pH 7.8 at 45 °C, and maintained 33.67 %, 45.6 % and 57.78 % residual activity after incubation at 80 °C for 2 h. The specific activity towards tributyrin and p-nitrophenyl acetate were observed to be SOM-ZIF-8@LipaseELP (0.25 and 45.85 U/mg) compared to ZIF-8@LipaseELP (0.211 and 43.62 U/mg) and LipaseELP (0.179 and 41.09 U/mg) respectively. The SOM-ZIF-8@LipaseELP could further be recovered and reused for 9 rounds while maintaining 73.8 % of its original activity. This study demonstrates that introducing mesoporous structures into ZIF-8 could improve its binding enzyme property for enhanced hydrolytic function.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.