{"title":"超越大脑进化的马赛克模型:饲养环境决定局部和整体可塑性","authors":"Magda L. Dumitru, Anders Martin Frugård Opdal","doi":"10.1111/nyas.15267","DOIUrl":null,"url":null,"abstract":"Comparative animal studies have identified a trend toward a more global structural organization as brains become larger, suggesting that brain regions grow in sync as predicted by the concerted model of brain evolution. At the same time, brain plasticity studies have identified a boost in local brain structure triggered by the environment, suggesting that brain regions grow independently, as predicted by the mosaic model. Nevertheless, it is unclear whether the environment can also trigger shifts toward a more global brain structure, that is, whether phenotypic plasticity proceeds in a concerted fashion. Here, we examined the impact of radically different rearing environments on brain organization in a teleost fish, the three-spined stickleback (<i>Gasterosteus aculeatus</i>). We computed novel indices of local and global brain structure across groups reared in the two environments and entered them as predictors of differences in brain and body sizes. Changes in local brain structure predicted differences in both body and brain sizes, whereas changes in global brain structure only predicted differences in brain size. Our findings highlight the emergence of brain plasticity in a population as local and global changes that are both compatible with the concerted model.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"18 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the mosaic model of brain evolution: Rearing environment defines local and global plasticity\",\"authors\":\"Magda L. Dumitru, Anders Martin Frugård Opdal\",\"doi\":\"10.1111/nyas.15267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparative animal studies have identified a trend toward a more global structural organization as brains become larger, suggesting that brain regions grow in sync as predicted by the concerted model of brain evolution. At the same time, brain plasticity studies have identified a boost in local brain structure triggered by the environment, suggesting that brain regions grow independently, as predicted by the mosaic model. Nevertheless, it is unclear whether the environment can also trigger shifts toward a more global brain structure, that is, whether phenotypic plasticity proceeds in a concerted fashion. Here, we examined the impact of radically different rearing environments on brain organization in a teleost fish, the three-spined stickleback (<i>Gasterosteus aculeatus</i>). We computed novel indices of local and global brain structure across groups reared in the two environments and entered them as predictors of differences in brain and body sizes. Changes in local brain structure predicted differences in both body and brain sizes, whereas changes in global brain structure only predicted differences in brain size. Our findings highlight the emergence of brain plasticity in a population as local and global changes that are both compatible with the concerted model.\",\"PeriodicalId\":8250,\"journal\":{\"name\":\"Annals of the New York Academy of Sciences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the New York Academy of Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1111/nyas.15267\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15267","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Beyond the mosaic model of brain evolution: Rearing environment defines local and global plasticity
Comparative animal studies have identified a trend toward a more global structural organization as brains become larger, suggesting that brain regions grow in sync as predicted by the concerted model of brain evolution. At the same time, brain plasticity studies have identified a boost in local brain structure triggered by the environment, suggesting that brain regions grow independently, as predicted by the mosaic model. Nevertheless, it is unclear whether the environment can also trigger shifts toward a more global brain structure, that is, whether phenotypic plasticity proceeds in a concerted fashion. Here, we examined the impact of radically different rearing environments on brain organization in a teleost fish, the three-spined stickleback (Gasterosteus aculeatus). We computed novel indices of local and global brain structure across groups reared in the two environments and entered them as predictors of differences in brain and body sizes. Changes in local brain structure predicted differences in both body and brain sizes, whereas changes in global brain structure only predicted differences in brain size. Our findings highlight the emergence of brain plasticity in a population as local and global changes that are both compatible with the concerted model.
期刊介绍:
Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.