Antti Pihlajamäki, María Francisca Matus, Sami Malola, Hannu Häkkinen
{"title":"GraphBNC:机器学习辅助预测金属纳米团簇与血液蛋白质之间的相互作用(Adv. Mater.)","authors":"Antti Pihlajamäki, María Francisca Matus, Sami Malola, Hannu Häkkinen","doi":"10.1002/adma.202470379","DOIUrl":null,"url":null,"abstract":"<p><b>Machine Learning for Nano-Bio Interfaces</b></p><p>In article number 2407046, Antti Pihlajamäki, María Francisca Matus, Sami Malola, and Hannu Häkkinen report a method based on graph theory and neural networks (GraphBNC) to predict atom-scale interactions between ligand-stabilized gold nanoclusters and proteins. The method uses dynamic data from molecular dynamics simulations, making GraphBNC particularly useful when empirical evidence is scarce.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 47","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202470379","citationCount":"0","resultStr":"{\"title\":\"GraphBNC: Machine Learning-Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins (Adv. Mater. 47/2024)\",\"authors\":\"Antti Pihlajamäki, María Francisca Matus, Sami Malola, Hannu Häkkinen\",\"doi\":\"10.1002/adma.202470379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Machine Learning for Nano-Bio Interfaces</b></p><p>In article number 2407046, Antti Pihlajamäki, María Francisca Matus, Sami Malola, and Hannu Häkkinen report a method based on graph theory and neural networks (GraphBNC) to predict atom-scale interactions between ligand-stabilized gold nanoclusters and proteins. The method uses dynamic data from molecular dynamics simulations, making GraphBNC particularly useful when empirical evidence is scarce.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"36 47\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202470379\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202470379\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202470379","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
GraphBNC: Machine Learning-Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins (Adv. Mater. 47/2024)
Machine Learning for Nano-Bio Interfaces
In article number 2407046, Antti Pihlajamäki, María Francisca Matus, Sami Malola, and Hannu Häkkinen report a method based on graph theory and neural networks (GraphBNC) to predict atom-scale interactions between ligand-stabilized gold nanoclusters and proteins. The method uses dynamic data from molecular dynamics simulations, making GraphBNC particularly useful when empirical evidence is scarce.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.