多孔碳中的 Kr 吸附:与温度有关的实验和计算研究†

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ziyi Wang, Cullen M. Quine, Claire N. Saunders, Camille M. Bernal-Choban, Channing C. Ahn, Brent T. Fultz
{"title":"多孔碳中的 Kr 吸附:与温度有关的实验和计算研究†","authors":"Ziyi Wang, Cullen M. Quine, Claire N. Saunders, Camille M. Bernal-Choban, Channing C. Ahn, Brent T. Fultz","doi":"10.1021/acs.langmuir.4c02194","DOIUrl":null,"url":null,"abstract":"The temperature dependence of the adsorption energy of krypton adsorption on activated carbon materials was studied by experiment and simulation. Adsorption isotherms were measured at temperatures from 250 to 330 K and analyzed with Henry’s law. The adsorption energy determined from these measurements was found to weaken by more than 10% in this range. Slit pore widths for simulations in this work were modeled by the removal of integral numbers of planes in graphite. Vibrational dynamics of the krypton adsorbate and the carbon atom adsorbent were calculated with the stochastic temperature-dependent effective potential (sTDEP) method, using energetics from density functional theory (DFT) with the many-body dispersion energy method (MBD). Thermal displacements of carbon atoms had a negligible effect on the adsorption energy. The width of the slit pore had the greatest effect on the surface dynamics and the energies of the adsorbate atoms at different temperatures. Assuming a distribution of pore widths, the Boltzmann distribution of site occupancies causes a large weakening of the thermally averaged adsorption energy at higher temperatures.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"35 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kr Adsorption in Porous Carbons: Temperature-Dependent Experimental and Computational Studies†\",\"authors\":\"Ziyi Wang, Cullen M. Quine, Claire N. Saunders, Camille M. Bernal-Choban, Channing C. Ahn, Brent T. Fultz\",\"doi\":\"10.1021/acs.langmuir.4c02194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temperature dependence of the adsorption energy of krypton adsorption on activated carbon materials was studied by experiment and simulation. Adsorption isotherms were measured at temperatures from 250 to 330 K and analyzed with Henry’s law. The adsorption energy determined from these measurements was found to weaken by more than 10% in this range. Slit pore widths for simulations in this work were modeled by the removal of integral numbers of planes in graphite. Vibrational dynamics of the krypton adsorbate and the carbon atom adsorbent were calculated with the stochastic temperature-dependent effective potential (sTDEP) method, using energetics from density functional theory (DFT) with the many-body dispersion energy method (MBD). Thermal displacements of carbon atoms had a negligible effect on the adsorption energy. The width of the slit pore had the greatest effect on the surface dynamics and the energies of the adsorbate atoms at different temperatures. Assuming a distribution of pore widths, the Boltzmann distribution of site occupancies causes a large weakening of the thermally averaged adsorption energy at higher temperatures.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02194\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02194","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过实验和模拟研究了氪在活性炭材料上的吸附能与温度的关系。在 250 至 330 K 的温度下测量了吸附等温线,并用亨利定律进行了分析。根据这些测量结果确定的吸附能在此范围内减弱了 10%以上。这项工作中模拟的狭缝孔隙宽度是通过去除石墨中的整数平面来建模的。氪吸附剂和碳原子吸附剂的振动动力学是通过随机温度相关有效势(sTDEP)方法,利用密度泛函理论(DFT)中的多体色散能方法(MBD)计算得出的。碳原子的热位移对吸附能的影响可以忽略不计。狭缝孔隙的宽度对不同温度下的表面动力学和吸附原子的能量影响最大。假定孔隙宽度分布,位点占有率的玻尔兹曼分布导致热平均吸附能在较高温度下大幅减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kr Adsorption in Porous Carbons: Temperature-Dependent Experimental and Computational Studies†

Kr Adsorption in Porous Carbons: Temperature-Dependent Experimental and Computational Studies†
The temperature dependence of the adsorption energy of krypton adsorption on activated carbon materials was studied by experiment and simulation. Adsorption isotherms were measured at temperatures from 250 to 330 K and analyzed with Henry’s law. The adsorption energy determined from these measurements was found to weaken by more than 10% in this range. Slit pore widths for simulations in this work were modeled by the removal of integral numbers of planes in graphite. Vibrational dynamics of the krypton adsorbate and the carbon atom adsorbent were calculated with the stochastic temperature-dependent effective potential (sTDEP) method, using energetics from density functional theory (DFT) with the many-body dispersion energy method (MBD). Thermal displacements of carbon atoms had a negligible effect on the adsorption energy. The width of the slit pore had the greatest effect on the surface dynamics and the energies of the adsorbate atoms at different temperatures. Assuming a distribution of pore widths, the Boltzmann distribution of site occupancies causes a large weakening of the thermally averaged adsorption energy at higher temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信