{"title":"具有定向质子腔内粒子表面的 Janus 光热薄膜,可实现太阳能热发电设备中的热量控制","authors":"Zongming Xie, Junhao Zhuang, Haowen Chen, Lei Shao, Zhongyi Chen, Yunpeng Jiang, Siqi Bi, Xin Wei, Aizheng Chen, Shi-Bin Wang, Nina Jiang","doi":"10.1021/acsami.4c17131","DOIUrl":null,"url":null,"abstract":"Solar thermoelectric generators (STEGs) consisting of solar absorbers and thermoelectric generators (TEGs) can utilize solar energy to generate electrical power. However, performances of STEGs are limited by the heat losses of solar absorbers in air, which become more and more significant with an increase in the solar absorbing area. Herein, we describe the preparation of Au@AgPd nanostructure monolayer/poly(vinyl alcohol) (PVA) Janus photothermal films with broadband plasmonic absorption in the visible and near-infrared regions. By uniaxially stretching the Janus film, Au@AgPd can align along the stretching direction, which creates particle-in-cavity structures on the PVA surface. Benefiting from the oriented plasmonic particle-in-cavity configuration, the Janus films effectively convert sunlight into heat, trap the heat within their micrometer-depth structure, and facilitate its transfer along the direction of the nanostructure orientation. Integration of the Janus films with commercial TEGs allows thermal concentration onto a small thermoelectric surface, yielding an open-circuit voltage of 308 mV under 102 mW/cm<sup>2</sup> natural sunlight illumination. Heat losses in commercial TEGs integrated with Janus films are reduced by approximately 50% while maintaining the same voltage output. Furthermore, incorporating the Janus films into a conventional STEG with carbon-based solar absorbers significantly enhances solar-thermal-electric conversion performance, achieving an output power density of 1.3 W m<sup>–2</sup>. Our design of Janus photothermal films with oriented particle-in-cavity surfaces can be extended to various solar-thermal systems for high-efficiency solar energy conversion and heat management.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Janus Photothermal Films with Orientated Plasmonic Particle-in-Cavity Surfaces Enabling Heat Control in Solar-Thermal-Electric Generators\",\"authors\":\"Zongming Xie, Junhao Zhuang, Haowen Chen, Lei Shao, Zhongyi Chen, Yunpeng Jiang, Siqi Bi, Xin Wei, Aizheng Chen, Shi-Bin Wang, Nina Jiang\",\"doi\":\"10.1021/acsami.4c17131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar thermoelectric generators (STEGs) consisting of solar absorbers and thermoelectric generators (TEGs) can utilize solar energy to generate electrical power. However, performances of STEGs are limited by the heat losses of solar absorbers in air, which become more and more significant with an increase in the solar absorbing area. Herein, we describe the preparation of Au@AgPd nanostructure monolayer/poly(vinyl alcohol) (PVA) Janus photothermal films with broadband plasmonic absorption in the visible and near-infrared regions. By uniaxially stretching the Janus film, Au@AgPd can align along the stretching direction, which creates particle-in-cavity structures on the PVA surface. Benefiting from the oriented plasmonic particle-in-cavity configuration, the Janus films effectively convert sunlight into heat, trap the heat within their micrometer-depth structure, and facilitate its transfer along the direction of the nanostructure orientation. Integration of the Janus films with commercial TEGs allows thermal concentration onto a small thermoelectric surface, yielding an open-circuit voltage of 308 mV under 102 mW/cm<sup>2</sup> natural sunlight illumination. Heat losses in commercial TEGs integrated with Janus films are reduced by approximately 50% while maintaining the same voltage output. Furthermore, incorporating the Janus films into a conventional STEG with carbon-based solar absorbers significantly enhances solar-thermal-electric conversion performance, achieving an output power density of 1.3 W m<sup>–2</sup>. Our design of Janus photothermal films with oriented particle-in-cavity surfaces can be extended to various solar-thermal systems for high-efficiency solar energy conversion and heat management.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c17131\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17131","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Janus Photothermal Films with Orientated Plasmonic Particle-in-Cavity Surfaces Enabling Heat Control in Solar-Thermal-Electric Generators
Solar thermoelectric generators (STEGs) consisting of solar absorbers and thermoelectric generators (TEGs) can utilize solar energy to generate electrical power. However, performances of STEGs are limited by the heat losses of solar absorbers in air, which become more and more significant with an increase in the solar absorbing area. Herein, we describe the preparation of Au@AgPd nanostructure monolayer/poly(vinyl alcohol) (PVA) Janus photothermal films with broadband plasmonic absorption in the visible and near-infrared regions. By uniaxially stretching the Janus film, Au@AgPd can align along the stretching direction, which creates particle-in-cavity structures on the PVA surface. Benefiting from the oriented plasmonic particle-in-cavity configuration, the Janus films effectively convert sunlight into heat, trap the heat within their micrometer-depth structure, and facilitate its transfer along the direction of the nanostructure orientation. Integration of the Janus films with commercial TEGs allows thermal concentration onto a small thermoelectric surface, yielding an open-circuit voltage of 308 mV under 102 mW/cm2 natural sunlight illumination. Heat losses in commercial TEGs integrated with Janus films are reduced by approximately 50% while maintaining the same voltage output. Furthermore, incorporating the Janus films into a conventional STEG with carbon-based solar absorbers significantly enhances solar-thermal-electric conversion performance, achieving an output power density of 1.3 W m–2. Our design of Janus photothermal films with oriented particle-in-cavity surfaces can be extended to various solar-thermal systems for high-efficiency solar energy conversion and heat management.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.