Qianqiu Longyang, Seohye Choi, Hyrum Tennant, Devon Hill, Nathaniel Ashmead, Bethany T. Neilson, Dennis L. Newell, James P. McNamara, Tianfang Xu
{"title":"一种基于注意力的可解释深度学习方法,用于对以积雪为主的喀斯特山区流域进行空间分布式水文建模","authors":"Qianqiu Longyang, Seohye Choi, Hyrum Tennant, Devon Hill, Nathaniel Ashmead, Bethany T. Neilson, Dennis L. Newell, James P. McNamara, Tianfang Xu","doi":"10.1029/2024wr037878","DOIUrl":null,"url":null,"abstract":"In many regions globally, snowmelt-recharged mountainous karst aquifers serve as crucial sources for municipal and agricultural water supplies. In these watersheds, complex interplay of meteorological, topographical, and hydrogeological factors leads to intricate recharge-discharge pathways. This study introduces a spatially distributed deep learning precipitation-runoff model that combines Convolutional Long Short-Term Memory (ConvLSTM) with a spatial attention mechanism. The effectiveness of the deep learning model was evaluated using data from the Logan River watershed and subwatersheds, a characteristically karst-dominated hydrological system in northern Utah. Compared to the ConvLSTM baseline, the inclusion of a spatial attention mechanism improved performance for simulating discharge at the watershed outlet. Analysis of attention weights in the trained model unveiled distinct areas contributing the most to discharge under snowmelt and recession conditions. Furthermore, fine-tuning the model at subwatershed scales provided insights into cross-subwatershed subsurface connectivity. These findings align with results obtained from detailed hydrogeochemical tracer studies. Results highlight the potential of the proposed deep learning approach to unravel the complexities of karst aquifer systems, offering valuable insights for water resource management under future climate conditions. Furthermore, results suggest that the proposed explainable, spatially distributed, deep learning approach to hydrologic modeling holds promise for non-karstic watersheds.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"8 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Attention-Based Explainable Deep Learning Approach to Spatially Distributed Hydrologic Modeling of a Snow Dominated Mountainous Karst Watershed\",\"authors\":\"Qianqiu Longyang, Seohye Choi, Hyrum Tennant, Devon Hill, Nathaniel Ashmead, Bethany T. Neilson, Dennis L. Newell, James P. McNamara, Tianfang Xu\",\"doi\":\"10.1029/2024wr037878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many regions globally, snowmelt-recharged mountainous karst aquifers serve as crucial sources for municipal and agricultural water supplies. In these watersheds, complex interplay of meteorological, topographical, and hydrogeological factors leads to intricate recharge-discharge pathways. This study introduces a spatially distributed deep learning precipitation-runoff model that combines Convolutional Long Short-Term Memory (ConvLSTM) with a spatial attention mechanism. The effectiveness of the deep learning model was evaluated using data from the Logan River watershed and subwatersheds, a characteristically karst-dominated hydrological system in northern Utah. Compared to the ConvLSTM baseline, the inclusion of a spatial attention mechanism improved performance for simulating discharge at the watershed outlet. Analysis of attention weights in the trained model unveiled distinct areas contributing the most to discharge under snowmelt and recession conditions. Furthermore, fine-tuning the model at subwatershed scales provided insights into cross-subwatershed subsurface connectivity. These findings align with results obtained from detailed hydrogeochemical tracer studies. Results highlight the potential of the proposed deep learning approach to unravel the complexities of karst aquifer systems, offering valuable insights for water resource management under future climate conditions. Furthermore, results suggest that the proposed explainable, spatially distributed, deep learning approach to hydrologic modeling holds promise for non-karstic watersheds.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr037878\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037878","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An Attention-Based Explainable Deep Learning Approach to Spatially Distributed Hydrologic Modeling of a Snow Dominated Mountainous Karst Watershed
In many regions globally, snowmelt-recharged mountainous karst aquifers serve as crucial sources for municipal and agricultural water supplies. In these watersheds, complex interplay of meteorological, topographical, and hydrogeological factors leads to intricate recharge-discharge pathways. This study introduces a spatially distributed deep learning precipitation-runoff model that combines Convolutional Long Short-Term Memory (ConvLSTM) with a spatial attention mechanism. The effectiveness of the deep learning model was evaluated using data from the Logan River watershed and subwatersheds, a characteristically karst-dominated hydrological system in northern Utah. Compared to the ConvLSTM baseline, the inclusion of a spatial attention mechanism improved performance for simulating discharge at the watershed outlet. Analysis of attention weights in the trained model unveiled distinct areas contributing the most to discharge under snowmelt and recession conditions. Furthermore, fine-tuning the model at subwatershed scales provided insights into cross-subwatershed subsurface connectivity. These findings align with results obtained from detailed hydrogeochemical tracer studies. Results highlight the potential of the proposed deep learning approach to unravel the complexities of karst aquifer systems, offering valuable insights for water resource management under future climate conditions. Furthermore, results suggest that the proposed explainable, spatially distributed, deep learning approach to hydrologic modeling holds promise for non-karstic watersheds.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.