使用光沉积法制备的 MoS2/NaTaO3/CF 双作用电极的锌离子光充电电容器

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-11-25 DOI:10.1039/D4NR03936J
Aliakbar Mozafari, Mohamad Mohsen Momeni, Ali Naderi and Byeong-Kyu Lee
{"title":"使用光沉积法制备的 MoS2/NaTaO3/CF 双作用电极的锌离子光充电电容器","authors":"Aliakbar Mozafari, Mohamad Mohsen Momeni, Ali Naderi and Byeong-Kyu Lee","doi":"10.1039/D4NR03936J","DOIUrl":null,"url":null,"abstract":"<p >This study presents an innovative approach to integrated energy systems by combining solar energy harvesting and electrochemical charge storage in a single modular platform. By strategically incorporating a MoS<small><sub>2</sub></small>/NaTaO<small><sub>3</sub></small> heterostructure material, we have developed a photo-rechargeable zinc-ion capacitor (PR-ZIC) that utilises the synergistic benefits of this unique configuration. The photoactive MoS<small><sub>2</sub></small>/NaTaO<small><sub>3</sub></small> cathode effectively absorbs light and charges the capacitor, enabling continuous light-driven operation. Experimental studies show that the MoS<small><sub>2</sub></small>/NaTaO<small><sub>3</sub></small>-based photo-rechargeable zinc-ion capacitor (PR-ZIC) exhibits a significant increase in capacitance when irradiated with light, with a 2.76-fold increase (93.94 mF cm<small><sup>−2</sup></small>) compared to dark conditions (33.95 mF cm<small><sup>−2</sup></small>) at a 10 mV s<small><sup>−1</sup></small> scan rate. In addition, these capacitors show a photocharge voltage response of about 860 mV and excellent cyclability, retaining about 96% of their capacity over 4000 charge–discharge cycles. The results of this study highlight the potential of the MoS<small><sub>2</sub></small>/NaTaO<small><sub>3</sub></small> heterostructure as a high-performance photoactive material for advanced photo-rechargeable zinc-ion energy storage devices. This integrated approach offers innovative off-grid energy solutions by optimizing device footprint, minimizing energy transfer losses and providing sustainable energy storage options.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 2","pages":" 919-933"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-rechargeable zinc ion capacitors using MoS2/NaTaO3/CF dual-acting electrodes prepared by photodeposition method†\",\"authors\":\"Aliakbar Mozafari, Mohamad Mohsen Momeni, Ali Naderi and Byeong-Kyu Lee\",\"doi\":\"10.1039/D4NR03936J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study presents an innovative approach to integrated energy systems by combining solar energy harvesting and electrochemical charge storage in a single modular platform. By strategically incorporating a MoS<small><sub>2</sub></small>/NaTaO<small><sub>3</sub></small> heterostructure material, we have developed a photo-rechargeable zinc-ion capacitor (PR-ZIC) that utilises the synergistic benefits of this unique configuration. The photoactive MoS<small><sub>2</sub></small>/NaTaO<small><sub>3</sub></small> cathode effectively absorbs light and charges the capacitor, enabling continuous light-driven operation. Experimental studies show that the MoS<small><sub>2</sub></small>/NaTaO<small><sub>3</sub></small>-based photo-rechargeable zinc-ion capacitor (PR-ZIC) exhibits a significant increase in capacitance when irradiated with light, with a 2.76-fold increase (93.94 mF cm<small><sup>−2</sup></small>) compared to dark conditions (33.95 mF cm<small><sup>−2</sup></small>) at a 10 mV s<small><sup>−1</sup></small> scan rate. In addition, these capacitors show a photocharge voltage response of about 860 mV and excellent cyclability, retaining about 96% of their capacity over 4000 charge–discharge cycles. The results of this study highlight the potential of the MoS<small><sub>2</sub></small>/NaTaO<small><sub>3</sub></small> heterostructure as a high-performance photoactive material for advanced photo-rechargeable zinc-ion energy storage devices. This integrated approach offers innovative off-grid energy solutions by optimizing device footprint, minimizing energy transfer losses and providing sustainable energy storage options.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 2\",\"pages\":\" 919-933\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03936j\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03936j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种集成能源系统的创新方法,将太阳能收集和电化学电荷存储结合到一个模块化平台中。通过战略性地加入 MoS2/NaTaO3 异质结构材料,我们开发出了一种可光充电锌离子电容器 (PR-ZIC),利用了这种独特配置的协同优势。光活性 MoS2/NaTaO3 阴极能有效吸收光并为电容器充电,从而实现光驱动的连续运行。实验研究表明,基于 MoS2/NaTaO3 的光充电锌离子电容器(PR-ZIC)在光照射下电容显著增加,在 10 mV s-1 扫描速率下,电容比黑暗条件下的电容(33.95 mF cm-2)增加了 2.76 倍(93.94 mF cm-2)。此外,这些电容器还显示出约 860 mV 的光充电电压响应和出色的可循环性,在 4000 次充放电循环中保持了约 96% 的容量。这项研究的结果凸显了 MoS2/NaTaO3 异质结构作为一种高性能光活性材料在先进的光充电锌离子储能器件中的应用潜力。这种集成方法通过优化设备占地面积、最大限度地减少能量传输损耗和提供可持续的能量存储方案,提供了创新的离网能源解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photo-rechargeable zinc ion capacitors using MoS2/NaTaO3/CF dual-acting electrodes prepared by photodeposition method†

Photo-rechargeable zinc ion capacitors using MoS2/NaTaO3/CF dual-acting electrodes prepared by photodeposition method†

Photo-rechargeable zinc ion capacitors using MoS2/NaTaO3/CF dual-acting electrodes prepared by photodeposition method†

This study presents an innovative approach to integrated energy systems by combining solar energy harvesting and electrochemical charge storage in a single modular platform. By strategically incorporating a MoS2/NaTaO3 heterostructure material, we have developed a photo-rechargeable zinc-ion capacitor (PR-ZIC) that utilises the synergistic benefits of this unique configuration. The photoactive MoS2/NaTaO3 cathode effectively absorbs light and charges the capacitor, enabling continuous light-driven operation. Experimental studies show that the MoS2/NaTaO3-based photo-rechargeable zinc-ion capacitor (PR-ZIC) exhibits a significant increase in capacitance when irradiated with light, with a 2.76-fold increase (93.94 mF cm−2) compared to dark conditions (33.95 mF cm−2) at a 10 mV s−1 scan rate. In addition, these capacitors show a photocharge voltage response of about 860 mV and excellent cyclability, retaining about 96% of their capacity over 4000 charge–discharge cycles. The results of this study highlight the potential of the MoS2/NaTaO3 heterostructure as a high-performance photoactive material for advanced photo-rechargeable zinc-ion energy storage devices. This integrated approach offers innovative off-grid energy solutions by optimizing device footprint, minimizing energy transfer losses and providing sustainable energy storage options.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信