基于雅可比多项式的核多项式方法

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
I.O. Raikov, Y.M. Beltukov
{"title":"基于雅可比多项式的核多项式方法","authors":"I.O. Raikov, Y.M. Beltukov","doi":"10.1016/j.amc.2024.129207","DOIUrl":null,"url":null,"abstract":"The kernel polynomial method based on Jacobi polynomials <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>β</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> is proposed. The optimal-resolution positivity-preserving kernels and the corresponding damping factors are calculated. The results provide a generalization of the Jackson damping factors for arbitrary Jacobi polynomials. For <mml:math altimg=\"si2.svg\"><mml:mi>α</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mo>±</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">/</mml:mo><mml:mn>2</mml:mn></mml:math>, <mml:math altimg=\"si3.svg\"><mml:mi>β</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mo>±</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">/</mml:mo><mml:mn>2</mml:mn></mml:math> (Chebyshev polynomials of the first to fourth kinds), explicit trigonometric expressions for the damping factors are obtained. The resulting algorithm can be easily introduced into existing implementations of the kernel polynomial method.","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The kernel polynomial method based on Jacobi polynomials\",\"authors\":\"I.O. Raikov, Y.M. Beltukov\",\"doi\":\"10.1016/j.amc.2024.129207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kernel polynomial method based on Jacobi polynomials <mml:math altimg=\\\"si1.svg\\\"><mml:msubsup><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>α</mml:mi><mml:mo>,</mml:mo><mml:mi>β</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:math> is proposed. The optimal-resolution positivity-preserving kernels and the corresponding damping factors are calculated. The results provide a generalization of the Jackson damping factors for arbitrary Jacobi polynomials. For <mml:math altimg=\\\"si2.svg\\\"><mml:mi>α</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mo>±</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\\\"false\\\">/</mml:mo><mml:mn>2</mml:mn></mml:math>, <mml:math altimg=\\\"si3.svg\\\"><mml:mi>β</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mo>±</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\\\"false\\\">/</mml:mo><mml:mn>2</mml:mn></mml:math> (Chebyshev polynomials of the first to fourth kinds), explicit trigonometric expressions for the damping factors are obtained. The resulting algorithm can be easily introduced into existing implementations of the kernel polynomial method.\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.amc.2024.129207\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.amc.2024.129207","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

提出了基于雅可比多项式 Pn(α,β)(x)的核多项式方法。计算了最优分辨率的保正核及相应的阻尼系数。结果为任意雅可比多项式提供了杰克逊阻尼系数的一般化。对于 α=±1/2, β=±1/2(第一到第四种切比雪夫多项式),可以得到阻尼系数的明确三角表达式。由此产生的算法可以很容易地引入到核多项式方法的现有实现中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The kernel polynomial method based on Jacobi polynomials
The kernel polynomial method based on Jacobi polynomials Pn(α,β)(x) is proposed. The optimal-resolution positivity-preserving kernels and the corresponding damping factors are calculated. The results provide a generalization of the Jackson damping factors for arbitrary Jacobi polynomials. For α=±1/2, β=±1/2 (Chebyshev polynomials of the first to fourth kinds), explicit trigonometric expressions for the damping factors are obtained. The resulting algorithm can be easily introduced into existing implementations of the kernel polynomial method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信