Bertrand Guibert , Aurelia Poerio , Lisa Nicole , Julia Budzinski , Mélanie M. Leroux , Solenne Fleutot , Marc Ponçot , Franck Cleymand , Thierry Bastogne , Jean-Philippe Jehl
{"title":"用于心脏组织工程的可定制图案膜:模型辅助设计法","authors":"Bertrand Guibert , Aurelia Poerio , Lisa Nicole , Julia Budzinski , Mélanie M. Leroux , Solenne Fleutot , Marc Ponçot , Franck Cleymand , Thierry Bastogne , Jean-Philippe Jehl","doi":"10.1016/j.jmbbm.2024.106815","DOIUrl":null,"url":null,"abstract":"<div><div>Myocardial infarction can cause irreversible damage to the heart muscle, which can lead to heart failure. The difficulty of the treatment mainly arises from the anisotropic behavior of the myocardium fibrous structure. Patches or cardiac restraint devices appear to be a promising approach to post-infarction treatment. In this study, we propose a new model-assisted method to design patterned membranes. The proposed approach combines computer experiments and statistical models to optimize the design parameters and to meet the requirement for the post-infarction treatment. Finite element model, global sensitivity analysis, random forest model and response surface model are the key components of the strategy implemented in this study, which is applied to design a real membrane. The metamodel-based design method is able to estimate the equivalent Young’s modulus of the membrane in a few seconds and optimization results have been validated <em>a posteriori</em> by laboratory measurements. This solution opens up new prospects for the design of customized membranes with technical specifications tailored to each patient.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"162 ","pages":"Article 106815"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Customizable patterned membranes for cardiac tissue engineering: A model-assisted design method\",\"authors\":\"Bertrand Guibert , Aurelia Poerio , Lisa Nicole , Julia Budzinski , Mélanie M. Leroux , Solenne Fleutot , Marc Ponçot , Franck Cleymand , Thierry Bastogne , Jean-Philippe Jehl\",\"doi\":\"10.1016/j.jmbbm.2024.106815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Myocardial infarction can cause irreversible damage to the heart muscle, which can lead to heart failure. The difficulty of the treatment mainly arises from the anisotropic behavior of the myocardium fibrous structure. Patches or cardiac restraint devices appear to be a promising approach to post-infarction treatment. In this study, we propose a new model-assisted method to design patterned membranes. The proposed approach combines computer experiments and statistical models to optimize the design parameters and to meet the requirement for the post-infarction treatment. Finite element model, global sensitivity analysis, random forest model and response surface model are the key components of the strategy implemented in this study, which is applied to design a real membrane. The metamodel-based design method is able to estimate the equivalent Young’s modulus of the membrane in a few seconds and optimization results have been validated <em>a posteriori</em> by laboratory measurements. This solution opens up new prospects for the design of customized membranes with technical specifications tailored to each patient.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"162 \",\"pages\":\"Article 106815\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124004478\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004478","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Customizable patterned membranes for cardiac tissue engineering: A model-assisted design method
Myocardial infarction can cause irreversible damage to the heart muscle, which can lead to heart failure. The difficulty of the treatment mainly arises from the anisotropic behavior of the myocardium fibrous structure. Patches or cardiac restraint devices appear to be a promising approach to post-infarction treatment. In this study, we propose a new model-assisted method to design patterned membranes. The proposed approach combines computer experiments and statistical models to optimize the design parameters and to meet the requirement for the post-infarction treatment. Finite element model, global sensitivity analysis, random forest model and response surface model are the key components of the strategy implemented in this study, which is applied to design a real membrane. The metamodel-based design method is able to estimate the equivalent Young’s modulus of the membrane in a few seconds and optimization results have been validated a posteriori by laboratory measurements. This solution opens up new prospects for the design of customized membranes with technical specifications tailored to each patient.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.