具有重复测量的不完全观测非参数因子设计:野性引导法

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Lubna Amro, Frank Konietschke, Markus Pauly
{"title":"具有重复测量的不完全观测非参数因子设计:野性引导法","authors":"Lubna Amro,&nbsp;Frank Konietschke,&nbsp;Markus Pauly","doi":"10.1002/bimj.70008","DOIUrl":null,"url":null,"abstract":"<p>In many life science experiments or medical studies, subjects are repeatedly observed and measurements are collected in factorial designs with multivariate data. The analysis of such multivariate data is typically based on multivariate analysis of variance (MANOVA) or mixed models, requiring complete data, and certain assumption on the underlying parametric distribution such as continuity or a specific covariance structure, for example, compound symmetry. However, these methods are usually not applicable when discrete data or even ordered categorical data are present. In such cases, nonparametric rank-based methods that do not require stringent distributional assumptions are the preferred choice. However, in the multivariate case, most rank-based approaches have only been developed for complete observations. It is the aim of this work to develop asymptotic correct procedures that are capable of handling missing values, allowing for singular covariance matrices and are applicable for ordinal or ordered categorical data. This is achieved by applying a wild bootstrap procedure in combination with quadratic form-type test statistics. Beyond proving their asymptotic correctness, extensive simulation studies validate their applicability for small samples. Finally, two real data examples are analyzed.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70008","citationCount":"0","resultStr":"{\"title\":\"Incompletely Observed Nonparametric Factorial Designs With Repeated Measurements: A Wild Bootstrap Approach\",\"authors\":\"Lubna Amro,&nbsp;Frank Konietschke,&nbsp;Markus Pauly\",\"doi\":\"10.1002/bimj.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In many life science experiments or medical studies, subjects are repeatedly observed and measurements are collected in factorial designs with multivariate data. The analysis of such multivariate data is typically based on multivariate analysis of variance (MANOVA) or mixed models, requiring complete data, and certain assumption on the underlying parametric distribution such as continuity or a specific covariance structure, for example, compound symmetry. However, these methods are usually not applicable when discrete data or even ordered categorical data are present. In such cases, nonparametric rank-based methods that do not require stringent distributional assumptions are the preferred choice. However, in the multivariate case, most rank-based approaches have only been developed for complete observations. It is the aim of this work to develop asymptotic correct procedures that are capable of handling missing values, allowing for singular covariance matrices and are applicable for ordinal or ordered categorical data. This is achieved by applying a wild bootstrap procedure in combination with quadratic form-type test statistics. Beyond proving their asymptotic correctness, extensive simulation studies validate their applicability for small samples. Finally, two real data examples are analyzed.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70008\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在许多生命科学实验或医学研究中,受试者会被反复观察,并在因子设计中收集多变量数据。对这类多变量数据的分析通常基于多变量方差分析(MANOVA)或混合模型,需要完整的数据,以及对基本参数分布的某些假设,如连续性或特定的协方差结构,例如复合对称性。然而,这些方法通常不适用于离散数据甚至有序分类数据。在这种情况下,无需严格分布假设的非参数秩方法是首选。然而,在多变量情况下,大多数基于秩的方法只针对完整的观测数据。这项工作的目的是开发能够处理缺失值、允许奇异协方差矩阵并适用于序数或有序分类数据的渐进正确程序。这是通过应用野生引导程序与二次型检验统计相结合来实现的。除了证明其渐近正确性之外,大量的模拟研究也验证了其对小样本的适用性。最后,还分析了两个真实数据实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Incompletely Observed Nonparametric Factorial Designs With Repeated Measurements: A Wild Bootstrap Approach

Incompletely Observed Nonparametric Factorial Designs With Repeated Measurements: A Wild Bootstrap Approach

In many life science experiments or medical studies, subjects are repeatedly observed and measurements are collected in factorial designs with multivariate data. The analysis of such multivariate data is typically based on multivariate analysis of variance (MANOVA) or mixed models, requiring complete data, and certain assumption on the underlying parametric distribution such as continuity or a specific covariance structure, for example, compound symmetry. However, these methods are usually not applicable when discrete data or even ordered categorical data are present. In such cases, nonparametric rank-based methods that do not require stringent distributional assumptions are the preferred choice. However, in the multivariate case, most rank-based approaches have only been developed for complete observations. It is the aim of this work to develop asymptotic correct procedures that are capable of handling missing values, allowing for singular covariance matrices and are applicable for ordinal or ordered categorical data. This is achieved by applying a wild bootstrap procedure in combination with quadratic form-type test statistics. Beyond proving their asymptotic correctness, extensive simulation studies validate their applicability for small samples. Finally, two real data examples are analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信