五角肽重复图案超家族成员 AtECB2 的弱等位基因会导致拟南芥叶片出现荧光。

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Ya-Ping Liang, Xue-Wen Hou
{"title":"五角肽重复图案超家族成员 AtECB2 的弱等位基因会导致拟南芥叶片出现荧光。","authors":"Ya-Ping Liang, Xue-Wen Hou","doi":"10.1007/s00299-024-03376-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Through the study of a point mutation of AtECB2, it is reconfirmed that AtECB2 plays an important role in the early development of chloroplast. AtECB2(EARLY CHLOROPLAST BIOGENESIS 2, At1g15510), a member of the pentatricopeptide repeat motif proteins (PPR) superfamily, and its loss of function mutation ecb2-1causes seedling lethal, while a point mutation ecb2-2 causes delayed chloroplast development. Finding more AtECB2 weak alleles helps to understand the molecular mechanisms of AtECB2. In this study, a leaf virescence mutant was identified from ethylmethane sulfonate (EMS) treated Arabidopsis Col-0 M2 mutants library. The mutation of this mutant was first confirmed as a recessive mutation of one gene through the phenotype of F1 and its F2 phenotype segregation of this mutant crossed with Col-0. The mutation of G1931A of AtECB2 is identified as the cause of this leaf virescence phenotype sequentially through positional cloning, whole genome resequencing, Sanger sequencing and complementation. Therefore, we named this weak allele of AtECB2 as ecb2-3. The chlorophyll content and photosystem II maximum photochemical efficiency of ecb2-3 are obviously lower than that of Col-0 and its complementation lines, respectively. The chloroplast development of ecb2-3 is also inferior to that of Col-0 and its complementation line at the observed time points using the transmission electron microscope. The RNA editing efficiency of three chloroplast gene sites (accD C794 and C1568, ndhF C290) was observed much lower compared with that of Col-0 and its complementation line. In summary, AtECB2 plays an important role in early chloroplast biogenesis through related chloroplast gene editing regulation, and this weak mutant ecb2-3 may be useful material in dissecting the function of AtECB2 in the near future.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"43 12","pages":"292"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A weak allele of AtECB2, a member of the pentatricopeptide repeat motif superfamily, causes leaf virescence in Arabidopsis.\",\"authors\":\"Ya-Ping Liang, Xue-Wen Hou\",\"doi\":\"10.1007/s00299-024-03376-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Through the study of a point mutation of AtECB2, it is reconfirmed that AtECB2 plays an important role in the early development of chloroplast. AtECB2(EARLY CHLOROPLAST BIOGENESIS 2, At1g15510), a member of the pentatricopeptide repeat motif proteins (PPR) superfamily, and its loss of function mutation ecb2-1causes seedling lethal, while a point mutation ecb2-2 causes delayed chloroplast development. Finding more AtECB2 weak alleles helps to understand the molecular mechanisms of AtECB2. In this study, a leaf virescence mutant was identified from ethylmethane sulfonate (EMS) treated Arabidopsis Col-0 M2 mutants library. The mutation of this mutant was first confirmed as a recessive mutation of one gene through the phenotype of F1 and its F2 phenotype segregation of this mutant crossed with Col-0. The mutation of G1931A of AtECB2 is identified as the cause of this leaf virescence phenotype sequentially through positional cloning, whole genome resequencing, Sanger sequencing and complementation. Therefore, we named this weak allele of AtECB2 as ecb2-3. The chlorophyll content and photosystem II maximum photochemical efficiency of ecb2-3 are obviously lower than that of Col-0 and its complementation lines, respectively. The chloroplast development of ecb2-3 is also inferior to that of Col-0 and its complementation line at the observed time points using the transmission electron microscope. The RNA editing efficiency of three chloroplast gene sites (accD C794 and C1568, ndhF C290) was observed much lower compared with that of Col-0 and its complementation line. In summary, AtECB2 plays an important role in early chloroplast biogenesis through related chloroplast gene editing regulation, and this weak mutant ecb2-3 may be useful material in dissecting the function of AtECB2 in the near future.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"43 12\",\"pages\":\"292\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-024-03376-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03376-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:通过对AtECB2点突变的研究,再次证实AtECB2在叶绿体的早期发育中发挥着重要作用。AtECB2(EARLY CHLOROPLAST BIOGENESIS 2, At1g15510)是五肽重复基序蛋白(PPR)超家族的成员,其功能缺失突变ecb2-1导致幼苗致死,而点突变ecb2-2导致叶绿体发育延迟。寻找更多的 AtECB2 弱等位基因有助于了解 AtECB2 的分子机制。本研究从经甲烷磺酸盐(EMS)处理的拟南芥Col-0 M2突变体库中发现了一个叶片荧光突变体。通过该突变体与 Col-0 杂交的 F1 表型及其 F2 表型分离,首先证实该突变体是一个基因的隐性突变。通过定位克隆、全基因组重测序、桑格测序和补体测序,我们确定 AtECB2 的 G1931A 突变是导致该叶片病毒病表型的原因。因此,我们将这一 AtECB2 弱等位基因命名为 ecb2-3。ecb2-3的叶绿素含量和光系统II最大光化学效率分别明显低于Col-0及其互补系。在透射电子显微镜下观察的时间点上,ecb2-3 的叶绿体发育也不如 Col-0 及其互补品系。观察到三个叶绿体基因位点(accD C794 和 C1568、ndhF C290)的 RNA 编辑效率远低于 Col-0 及其互补系。综上所述,AtECB2通过相关叶绿体基因编辑调控在早期叶绿体生物发生中发挥了重要作用,该弱突变体ecb2-3可能是不久的将来研究AtECB2功能的有用材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A weak allele of AtECB2, a member of the pentatricopeptide repeat motif superfamily, causes leaf virescence in Arabidopsis.

Key message: Through the study of a point mutation of AtECB2, it is reconfirmed that AtECB2 plays an important role in the early development of chloroplast. AtECB2(EARLY CHLOROPLAST BIOGENESIS 2, At1g15510), a member of the pentatricopeptide repeat motif proteins (PPR) superfamily, and its loss of function mutation ecb2-1causes seedling lethal, while a point mutation ecb2-2 causes delayed chloroplast development. Finding more AtECB2 weak alleles helps to understand the molecular mechanisms of AtECB2. In this study, a leaf virescence mutant was identified from ethylmethane sulfonate (EMS) treated Arabidopsis Col-0 M2 mutants library. The mutation of this mutant was first confirmed as a recessive mutation of one gene through the phenotype of F1 and its F2 phenotype segregation of this mutant crossed with Col-0. The mutation of G1931A of AtECB2 is identified as the cause of this leaf virescence phenotype sequentially through positional cloning, whole genome resequencing, Sanger sequencing and complementation. Therefore, we named this weak allele of AtECB2 as ecb2-3. The chlorophyll content and photosystem II maximum photochemical efficiency of ecb2-3 are obviously lower than that of Col-0 and its complementation lines, respectively. The chloroplast development of ecb2-3 is also inferior to that of Col-0 and its complementation line at the observed time points using the transmission electron microscope. The RNA editing efficiency of three chloroplast gene sites (accD C794 and C1568, ndhF C290) was observed much lower compared with that of Col-0 and its complementation line. In summary, AtECB2 plays an important role in early chloroplast biogenesis through related chloroplast gene editing regulation, and this weak mutant ecb2-3 may be useful material in dissecting the function of AtECB2 in the near future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信