Guotong Sun , Yaowen Xu , Xiuwen Liang , Lei Wang , Yu Liu
{"title":"姜黄素通过 OGT 介导的 O-GlcNAcylation 对 APOC3 的调节作用抑制高脂血症的发展。","authors":"Guotong Sun , Yaowen Xu , Xiuwen Liang , Lei Wang , Yu Liu","doi":"10.1016/j.intimp.2024.113647","DOIUrl":null,"url":null,"abstract":"<div><div>The etiology of hyperlipidemia is complex, and our understanding of its underlying mechanisms is limited. Effective therapeutic strategies for hyperlipidemia remain elusive. This study aimed to confirm the effect of curcumin on hyperlipidemia treatment and elucidate the precise mechanism. A high-fat diet-induced hyperlipidemia model using C57BL/6J mice and HaCaT cells was established. Co-immunoprecipitation and immunofluorescence were performed to detect protein interactions, and immunoprecipitation coupled with Western blotting was used to assess protein succinylation. 40 μM of curcumin administration promoted cell viability, increased the levels of glutathione peroxidase, glutathione, catalase, and superoxide dismutase, while reducing reactive oxygen species activity and the levels of triglycerides and malondialdehyde. Additionally, curcumin attenuated the development of hyperlipidemia in vivo. Mechanistically, 100 mg/kg of curcumin promoted O-GlcNAcylation and increased the expression of O-linked N-acetylglucosamine transferase in HaCaT cells. Furthermore, apolipoprotein C3 was identified as a substrate of O-linked N-acetylglucosamine transferase, and O-GlcNAcylation of apolipoprotein C3 enhanced its stability. Rescue experiments further verified that curcumin exerts its effects by regulating apolipoprotein C3 expression. In conclusion, these findings provide novel insights into the treatment of hyperlipidemia.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"144 ","pages":"Article 113647"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curcumin inhibits the progression of hyperlipidemia via OGT mediated O-GlcNAcylation modulation of APOC3\",\"authors\":\"Guotong Sun , Yaowen Xu , Xiuwen Liang , Lei Wang , Yu Liu\",\"doi\":\"10.1016/j.intimp.2024.113647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The etiology of hyperlipidemia is complex, and our understanding of its underlying mechanisms is limited. Effective therapeutic strategies for hyperlipidemia remain elusive. This study aimed to confirm the effect of curcumin on hyperlipidemia treatment and elucidate the precise mechanism. A high-fat diet-induced hyperlipidemia model using C57BL/6J mice and HaCaT cells was established. Co-immunoprecipitation and immunofluorescence were performed to detect protein interactions, and immunoprecipitation coupled with Western blotting was used to assess protein succinylation. 40 μM of curcumin administration promoted cell viability, increased the levels of glutathione peroxidase, glutathione, catalase, and superoxide dismutase, while reducing reactive oxygen species activity and the levels of triglycerides and malondialdehyde. Additionally, curcumin attenuated the development of hyperlipidemia in vivo. Mechanistically, 100 mg/kg of curcumin promoted O-GlcNAcylation and increased the expression of O-linked N-acetylglucosamine transferase in HaCaT cells. Furthermore, apolipoprotein C3 was identified as a substrate of O-linked N-acetylglucosamine transferase, and O-GlcNAcylation of apolipoprotein C3 enhanced its stability. Rescue experiments further verified that curcumin exerts its effects by regulating apolipoprotein C3 expression. In conclusion, these findings provide novel insights into the treatment of hyperlipidemia.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"144 \",\"pages\":\"Article 113647\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576924021696\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924021696","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Curcumin inhibits the progression of hyperlipidemia via OGT mediated O-GlcNAcylation modulation of APOC3
The etiology of hyperlipidemia is complex, and our understanding of its underlying mechanisms is limited. Effective therapeutic strategies for hyperlipidemia remain elusive. This study aimed to confirm the effect of curcumin on hyperlipidemia treatment and elucidate the precise mechanism. A high-fat diet-induced hyperlipidemia model using C57BL/6J mice and HaCaT cells was established. Co-immunoprecipitation and immunofluorescence were performed to detect protein interactions, and immunoprecipitation coupled with Western blotting was used to assess protein succinylation. 40 μM of curcumin administration promoted cell viability, increased the levels of glutathione peroxidase, glutathione, catalase, and superoxide dismutase, while reducing reactive oxygen species activity and the levels of triglycerides and malondialdehyde. Additionally, curcumin attenuated the development of hyperlipidemia in vivo. Mechanistically, 100 mg/kg of curcumin promoted O-GlcNAcylation and increased the expression of O-linked N-acetylglucosamine transferase in HaCaT cells. Furthermore, apolipoprotein C3 was identified as a substrate of O-linked N-acetylglucosamine transferase, and O-GlcNAcylation of apolipoprotein C3 enhanced its stability. Rescue experiments further verified that curcumin exerts its effects by regulating apolipoprotein C3 expression. In conclusion, these findings provide novel insights into the treatment of hyperlipidemia.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.