{"title":"新型半自主机器人辅助手术系统植入种植体的准确性和安全性:一项转化研究。","authors":"Fan Yang, Jianping Chen, Linhong Wang, Yude Ding","doi":"10.1016/j.prosdent.2024.10.026","DOIUrl":null,"url":null,"abstract":"<p><strong>Statement of problem: </strong>Translational studies evaluating the feasibility, accuracy, and safety of semi-autonomous implant robots, from model test to animal experiment and clinical trial, are currently lacking.</p><p><strong>Purpose: </strong>The purpose of this study was to evaluate the accuracy and safety of a novel semi-autonomous robotic-assisted surgical system (sa-RASS) in implant placement.</p><p><strong>Material and methods: </strong>A translational study was conducted to assess the application of the sa-RASS in a model test, an animal experiment, and a clinical controlled trial. The study included 45 resin models in the model test, 7 male beagle dogs in the animal experiment, and 60 participants who were recruited and randomly assigned to a freehand or a sa-RASS group in the clinical trial. The accuracy, surgical morbidity, complications, operator ratings of instrument safety, and satisfaction were recorded. Cone-beam computed tomography data were used to evaluate deviations between planned and placed implants. The data on deviations were analyzed using the Mann-Whitney U test. A linear regression model was established to analyze the variations in the deviations (α=.05).</p><p><strong>Results: </strong>The mean ±standard deviation of the platform, apex, and angulation deviations were 0.98 ±0.53 mm, 1.10 ±0.52 mm, and 1.45 ±0.60 degrees in the model test and 0.58 ±0.19, 0.59 ±0.22 mm, and 1.88 ±0.71 degrees in the animal experiment. In the clinical controlled study, the platform, apex, and angular deviations of the sa-RASS group and freehand group were 0.93 ±0.50 mm versus 1.45 ±0.86 mm (P<.01), 1.07 ±0.63 mm versus 2.05 ±1.16 mm (P<.001), and 3.10 ±1.68 degrees versus 7.94 ±3.55 degrees (P<.001). No complications, such as early implant failure, intraoperative hemorrhage, injuries to adjacent structures, or implant displacement beyond the apical anatomic limit, were observed in the sa-RASS group. The results of the linear regression model showed that age, sex, bone density, implant position, implant diameter, and length did not significantly influence the accuracy of implantation at the apex or the angulation (P>.05).</p><p><strong>Conclusions: </strong>The sa-RASS was found to be more accurate than freehand placement, with high operational safety and low surgical morbidity.</p>","PeriodicalId":16866,"journal":{"name":"Journal of Prosthetic Dentistry","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy and safety of implant placement with a novel semi-autonomous robotic-assisted surgical system: A translational research study.\",\"authors\":\"Fan Yang, Jianping Chen, Linhong Wang, Yude Ding\",\"doi\":\"10.1016/j.prosdent.2024.10.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Statement of problem: </strong>Translational studies evaluating the feasibility, accuracy, and safety of semi-autonomous implant robots, from model test to animal experiment and clinical trial, are currently lacking.</p><p><strong>Purpose: </strong>The purpose of this study was to evaluate the accuracy and safety of a novel semi-autonomous robotic-assisted surgical system (sa-RASS) in implant placement.</p><p><strong>Material and methods: </strong>A translational study was conducted to assess the application of the sa-RASS in a model test, an animal experiment, and a clinical controlled trial. The study included 45 resin models in the model test, 7 male beagle dogs in the animal experiment, and 60 participants who were recruited and randomly assigned to a freehand or a sa-RASS group in the clinical trial. The accuracy, surgical morbidity, complications, operator ratings of instrument safety, and satisfaction were recorded. Cone-beam computed tomography data were used to evaluate deviations between planned and placed implants. The data on deviations were analyzed using the Mann-Whitney U test. A linear regression model was established to analyze the variations in the deviations (α=.05).</p><p><strong>Results: </strong>The mean ±standard deviation of the platform, apex, and angulation deviations were 0.98 ±0.53 mm, 1.10 ±0.52 mm, and 1.45 ±0.60 degrees in the model test and 0.58 ±0.19, 0.59 ±0.22 mm, and 1.88 ±0.71 degrees in the animal experiment. In the clinical controlled study, the platform, apex, and angular deviations of the sa-RASS group and freehand group were 0.93 ±0.50 mm versus 1.45 ±0.86 mm (P<.01), 1.07 ±0.63 mm versus 2.05 ±1.16 mm (P<.001), and 3.10 ±1.68 degrees versus 7.94 ±3.55 degrees (P<.001). No complications, such as early implant failure, intraoperative hemorrhage, injuries to adjacent structures, or implant displacement beyond the apical anatomic limit, were observed in the sa-RASS group. The results of the linear regression model showed that age, sex, bone density, implant position, implant diameter, and length did not significantly influence the accuracy of implantation at the apex or the angulation (P>.05).</p><p><strong>Conclusions: </strong>The sa-RASS was found to be more accurate than freehand placement, with high operational safety and low surgical morbidity.</p>\",\"PeriodicalId\":16866,\"journal\":{\"name\":\"Journal of Prosthetic Dentistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Prosthetic Dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.prosdent.2024.10.026\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthetic Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.prosdent.2024.10.026","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Accuracy and safety of implant placement with a novel semi-autonomous robotic-assisted surgical system: A translational research study.
Statement of problem: Translational studies evaluating the feasibility, accuracy, and safety of semi-autonomous implant robots, from model test to animal experiment and clinical trial, are currently lacking.
Purpose: The purpose of this study was to evaluate the accuracy and safety of a novel semi-autonomous robotic-assisted surgical system (sa-RASS) in implant placement.
Material and methods: A translational study was conducted to assess the application of the sa-RASS in a model test, an animal experiment, and a clinical controlled trial. The study included 45 resin models in the model test, 7 male beagle dogs in the animal experiment, and 60 participants who were recruited and randomly assigned to a freehand or a sa-RASS group in the clinical trial. The accuracy, surgical morbidity, complications, operator ratings of instrument safety, and satisfaction were recorded. Cone-beam computed tomography data were used to evaluate deviations between planned and placed implants. The data on deviations were analyzed using the Mann-Whitney U test. A linear regression model was established to analyze the variations in the deviations (α=.05).
Results: The mean ±standard deviation of the platform, apex, and angulation deviations were 0.98 ±0.53 mm, 1.10 ±0.52 mm, and 1.45 ±0.60 degrees in the model test and 0.58 ±0.19, 0.59 ±0.22 mm, and 1.88 ±0.71 degrees in the animal experiment. In the clinical controlled study, the platform, apex, and angular deviations of the sa-RASS group and freehand group were 0.93 ±0.50 mm versus 1.45 ±0.86 mm (P<.01), 1.07 ±0.63 mm versus 2.05 ±1.16 mm (P<.001), and 3.10 ±1.68 degrees versus 7.94 ±3.55 degrees (P<.001). No complications, such as early implant failure, intraoperative hemorrhage, injuries to adjacent structures, or implant displacement beyond the apical anatomic limit, were observed in the sa-RASS group. The results of the linear regression model showed that age, sex, bone density, implant position, implant diameter, and length did not significantly influence the accuracy of implantation at the apex or the angulation (P>.05).
Conclusions: The sa-RASS was found to be more accurate than freehand placement, with high operational safety and low surgical morbidity.
期刊介绍:
The Journal of Prosthetic Dentistry is the leading professional journal devoted exclusively to prosthetic and restorative dentistry. The Journal is the official publication for 24 leading U.S. international prosthodontic organizations. The monthly publication features timely, original peer-reviewed articles on the newest techniques, dental materials, and research findings. The Journal serves prosthodontists and dentists in advanced practice, and features color photos that illustrate many step-by-step procedures. The Journal of Prosthetic Dentistry is included in Index Medicus and CINAHL.