利用人工智能模型检测股骨头坏死的病变,并根据射线照片生成 T1 加权磁共振成像。

IF 2.1 3区 医学 Q2 ORTHOPEDICS
Issei Shinohara, Atsuyuki Inui, Katherine Hwang, Masatoshi Murayama, Yosuke Susuki, Tomohiro Uno, Qi Gao, Mayu Morita, Simon Kwoon-Ho Chow, Masanori Tsubosaka, Yutaka Mifune, Tomoyuki Matsumoto, Ryosuke Kuroda, Stuart B Goodman
{"title":"利用人工智能模型检测股骨头坏死的病变,并根据射线照片生成 T1 加权磁共振成像。","authors":"Issei Shinohara, Atsuyuki Inui, Katherine Hwang, Masatoshi Murayama, Yosuke Susuki, Tomohiro Uno, Qi Gao, Mayu Morita, Simon Kwoon-Ho Chow, Masanori Tsubosaka, Yutaka Mifune, Tomoyuki Matsumoto, Ryosuke Kuroda, Stuart B Goodman","doi":"10.1002/jor.26026","DOIUrl":null,"url":null,"abstract":"<p><p>This study emphasizes the importance of early detection of osteonecrosis of the femoral head (ONFH) in young patients on long-term glucocorticoid therapy, including those with acute lymphoblastic leukemia, lupus, and other diagnoses. While X-ray and magnetic resonance imaging (MRI) are standard imaging methods for staging ONFH, MRI can be costly and time-consuming. The research focuses on utilizing artificial intelligence (AI) to enhance the evaluation of radiographic images for ONFH detection. The study involved analyzing X-ray and MRI from 102 control hips and 104 ONFH-affected hips at Association Research Circulation Osseous (ARCO) Stage II and IIIa. We employed transfer learning with the YOLOv8 model for object detection, using 80% of the data for training and 20% for validation, then assessed detection accuracy through mean average precision (mAP) and a precision-recall curve. Additionally, AI generated synthetic MRI (sMRI) from X-ray images using a Generative Adversarial Network (GAN) and evaluated their similarity to original MRI. Results showed that the mAP for ONFH detection was 0.923 for the YOLOv8n model and 0.951 for YOLOv8x. The GAN-generated sMRI exhibited lower image quality compared with originals but maintained potential for lesion assessment. Intrarater reliability among evaluators was high. The findings indicate that AI techniques, particularly YOLOv8 for object detection and GAN for image generation, can effectively assist in ONFH screening, despite some limitations in the generated MRI quality.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging AI models for lesion detection in osteonecrosis of the femoral head and T1-weighted MRI generation from radiographs.\",\"authors\":\"Issei Shinohara, Atsuyuki Inui, Katherine Hwang, Masatoshi Murayama, Yosuke Susuki, Tomohiro Uno, Qi Gao, Mayu Morita, Simon Kwoon-Ho Chow, Masanori Tsubosaka, Yutaka Mifune, Tomoyuki Matsumoto, Ryosuke Kuroda, Stuart B Goodman\",\"doi\":\"10.1002/jor.26026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study emphasizes the importance of early detection of osteonecrosis of the femoral head (ONFH) in young patients on long-term glucocorticoid therapy, including those with acute lymphoblastic leukemia, lupus, and other diagnoses. While X-ray and magnetic resonance imaging (MRI) are standard imaging methods for staging ONFH, MRI can be costly and time-consuming. The research focuses on utilizing artificial intelligence (AI) to enhance the evaluation of radiographic images for ONFH detection. The study involved analyzing X-ray and MRI from 102 control hips and 104 ONFH-affected hips at Association Research Circulation Osseous (ARCO) Stage II and IIIa. We employed transfer learning with the YOLOv8 model for object detection, using 80% of the data for training and 20% for validation, then assessed detection accuracy through mean average precision (mAP) and a precision-recall curve. Additionally, AI generated synthetic MRI (sMRI) from X-ray images using a Generative Adversarial Network (GAN) and evaluated their similarity to original MRI. Results showed that the mAP for ONFH detection was 0.923 for the YOLOv8n model and 0.951 for YOLOv8x. The GAN-generated sMRI exhibited lower image quality compared with originals but maintained potential for lesion assessment. Intrarater reliability among evaluators was high. The findings indicate that AI techniques, particularly YOLOv8 for object detection and GAN for image generation, can effectively assist in ONFH screening, despite some limitations in the generated MRI quality.</p>\",\"PeriodicalId\":16650,\"journal\":{\"name\":\"Journal of Orthopaedic Research®\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Research®\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jor.26026\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jor.26026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究强调了在长期接受糖皮质激素治疗的年轻患者中早期发现股骨头坏死(ONFH)的重要性,包括那些患有急性淋巴细胞白血病、狼疮和其他诊断的患者。X 光和磁共振成像(MRI)是对股骨头坏死进行分期的标准成像方法,但磁共振成像既昂贵又耗时。这项研究的重点是利用人工智能(AI)来加强放射影像的评估,以检测ONFH。该研究分析了102个对照组髋关节和104个受ONFH影响的髋关节的X射线和核磁共振成像,这些髋关节处于协会循环骨性研究(ARCO)的II期和IIIa期。我们利用 YOLOv8 模型的迁移学习进行对象检测,使用 80% 的数据进行训练,20% 的数据进行验证,然后通过平均精度 (mAP) 和精度-召回曲线评估检测精度。此外,人工智能利用生成对抗网络(GAN)从 X 光图像生成合成 MRI(sMRI),并评估其与原始 MRI 的相似性。结果显示,YOLOv8n 模型的 ONFH 检测 mAP 为 0.923,YOLOv8x 为 0.951。与原始 MRI 相比,GAN 生成的 sMRI 图像质量较低,但仍具有病变评估潜力。评估者之间的内部可靠性很高。研究结果表明,人工智能技术,尤其是用于物体检测的 YOLOv8 和用于图像生成的 GAN,可以有效地协助 ONFH 筛查,尽管生成的 MRI 质量有一定的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging AI models for lesion detection in osteonecrosis of the femoral head and T1-weighted MRI generation from radiographs.

This study emphasizes the importance of early detection of osteonecrosis of the femoral head (ONFH) in young patients on long-term glucocorticoid therapy, including those with acute lymphoblastic leukemia, lupus, and other diagnoses. While X-ray and magnetic resonance imaging (MRI) are standard imaging methods for staging ONFH, MRI can be costly and time-consuming. The research focuses on utilizing artificial intelligence (AI) to enhance the evaluation of radiographic images for ONFH detection. The study involved analyzing X-ray and MRI from 102 control hips and 104 ONFH-affected hips at Association Research Circulation Osseous (ARCO) Stage II and IIIa. We employed transfer learning with the YOLOv8 model for object detection, using 80% of the data for training and 20% for validation, then assessed detection accuracy through mean average precision (mAP) and a precision-recall curve. Additionally, AI generated synthetic MRI (sMRI) from X-ray images using a Generative Adversarial Network (GAN) and evaluated their similarity to original MRI. Results showed that the mAP for ONFH detection was 0.923 for the YOLOv8n model and 0.951 for YOLOv8x. The GAN-generated sMRI exhibited lower image quality compared with originals but maintained potential for lesion assessment. Intrarater reliability among evaluators was high. The findings indicate that AI techniques, particularly YOLOv8 for object detection and GAN for image generation, can effectively assist in ONFH screening, despite some limitations in the generated MRI quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Orthopaedic Research®
Journal of Orthopaedic Research® 医学-整形外科
CiteScore
6.10
自引率
3.60%
发文量
261
审稿时长
3-6 weeks
期刊介绍: The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信