{"title":"SARS-CoV-2包膜蛋白诱导的细胞外囊泡生成。","authors":"Qiguang Li, Qian Liu, Shuangqu Li, Xiaoli Zuo, Hu Zhou, Zhaobing Gao, Bingqing Xia","doi":"10.1007/s10495-024-02035-3","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles facilitate cell-to-cell communication, and some enveloped viruses utilize these vesicles as carriers to mediate viral transmission. SARS-CoV-2 envelope protein (2-E) forms a cation channel and overexpression of 2-E led to the generation of a distinct type of large extracellular vesicles (2-E-EVs). Although 2-E-EVs have been demonstrated to facilitate viral transmission in a receptor-independent way, the characteristics and biogenesis mechanism remain enigmatic. Via lipidomics and proteomic analysis, we found 2-E-EVs are distinct from endosome-derived exosomes. 2-E-EVs are notably enriched in Golgi apparatus components, aligning with the observed fragmentation in Golgi morphology. Through live cell imaging, we established a connection between 2-E-EVs formation, Golgi fragmentation, and channel activity, emphasizing the role of 2-E-EVs as ion channel-induced extracellular vesicles. Our work highlights 2-E-EVs as distinctive Golgi-derived vesicles, contributing to a deeper understanding of 2-E channel-mediated virus-host dynamics, with implications for therapeutic strategies and drug delivery.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Golgi-derived extracellular vesicle production induced by SARS-CoV-2 envelope protein.\",\"authors\":\"Qiguang Li, Qian Liu, Shuangqu Li, Xiaoli Zuo, Hu Zhou, Zhaobing Gao, Bingqing Xia\",\"doi\":\"10.1007/s10495-024-02035-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles facilitate cell-to-cell communication, and some enveloped viruses utilize these vesicles as carriers to mediate viral transmission. SARS-CoV-2 envelope protein (2-E) forms a cation channel and overexpression of 2-E led to the generation of a distinct type of large extracellular vesicles (2-E-EVs). Although 2-E-EVs have been demonstrated to facilitate viral transmission in a receptor-independent way, the characteristics and biogenesis mechanism remain enigmatic. Via lipidomics and proteomic analysis, we found 2-E-EVs are distinct from endosome-derived exosomes. 2-E-EVs are notably enriched in Golgi apparatus components, aligning with the observed fragmentation in Golgi morphology. Through live cell imaging, we established a connection between 2-E-EVs formation, Golgi fragmentation, and channel activity, emphasizing the role of 2-E-EVs as ion channel-induced extracellular vesicles. Our work highlights 2-E-EVs as distinctive Golgi-derived vesicles, contributing to a deeper understanding of 2-E channel-mediated virus-host dynamics, with implications for therapeutic strategies and drug delivery.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-024-02035-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-024-02035-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Golgi-derived extracellular vesicle production induced by SARS-CoV-2 envelope protein.
Extracellular vesicles facilitate cell-to-cell communication, and some enveloped viruses utilize these vesicles as carriers to mediate viral transmission. SARS-CoV-2 envelope protein (2-E) forms a cation channel and overexpression of 2-E led to the generation of a distinct type of large extracellular vesicles (2-E-EVs). Although 2-E-EVs have been demonstrated to facilitate viral transmission in a receptor-independent way, the characteristics and biogenesis mechanism remain enigmatic. Via lipidomics and proteomic analysis, we found 2-E-EVs are distinct from endosome-derived exosomes. 2-E-EVs are notably enriched in Golgi apparatus components, aligning with the observed fragmentation in Golgi morphology. Through live cell imaging, we established a connection between 2-E-EVs formation, Golgi fragmentation, and channel activity, emphasizing the role of 2-E-EVs as ion channel-induced extracellular vesicles. Our work highlights 2-E-EVs as distinctive Golgi-derived vesicles, contributing to a deeper understanding of 2-E channel-mediated virus-host dynamics, with implications for therapeutic strategies and drug delivery.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.