利用基础模型推进植物单细胞基因组学。

IF 8.3 2区 生物学 Q1 PLANT SCIENCES
Tran N. Chau , Xuan Wang , John M. McDowell , Song Li
{"title":"利用基础模型推进植物单细胞基因组学。","authors":"Tran N. Chau ,&nbsp;Xuan Wang ,&nbsp;John M. McDowell ,&nbsp;Song Li","doi":"10.1016/j.pbi.2024.102666","DOIUrl":null,"url":null,"abstract":"<div><div>Single-cell genomics, combined with advanced AI models, hold transformative potential for understanding complex biological processes in plants. This article reviews deep-learning approaches in single-cell genomics, focusing on foundation models, a type of large-scale, pretrained, multi-purpose generative AI models. We explore how these models, such as Generative Pre-trained Transformers (GPT), Bidirectional Encoder Representations from Transformers (BERT), and other Transformer-based architectures, are applied to extract meaningful biological insights from diverse single-cell datasets. These models address challenges in plant single-cell genomics, including improved cell-type annotation, gene network modeling, and multi-omics integration. Moreover, we assess the use of Generative Adversarial Networks (GANs) and diffusion models, focusing on their capacity to generate high-fidelity synthetic single-cell data, mitigate dropout events, and handle data sparsity and imbalance. Together, these AI-driven approaches hold immense potential to enhance research in plant genomics, facilitating discoveries in crop resilience, productivity, and stress adaptation.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102666"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing plant single-cell genomics with foundation models\",\"authors\":\"Tran N. Chau ,&nbsp;Xuan Wang ,&nbsp;John M. McDowell ,&nbsp;Song Li\",\"doi\":\"10.1016/j.pbi.2024.102666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Single-cell genomics, combined with advanced AI models, hold transformative potential for understanding complex biological processes in plants. This article reviews deep-learning approaches in single-cell genomics, focusing on foundation models, a type of large-scale, pretrained, multi-purpose generative AI models. We explore how these models, such as Generative Pre-trained Transformers (GPT), Bidirectional Encoder Representations from Transformers (BERT), and other Transformer-based architectures, are applied to extract meaningful biological insights from diverse single-cell datasets. These models address challenges in plant single-cell genomics, including improved cell-type annotation, gene network modeling, and multi-omics integration. Moreover, we assess the use of Generative Adversarial Networks (GANs) and diffusion models, focusing on their capacity to generate high-fidelity synthetic single-cell data, mitigate dropout events, and handle data sparsity and imbalance. Together, these AI-driven approaches hold immense potential to enhance research in plant genomics, facilitating discoveries in crop resilience, productivity, and stress adaptation.</div></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"82 \",\"pages\":\"Article 102666\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001572\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001572","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单细胞基因组学与先进的人工智能模型相结合,为了解植物的复杂生物过程带来了变革性的潜力。本文回顾了单细胞基因组学中的深度学习方法,重点关注基础模型,这是一种大规模、预训练、多用途的生成式人工智能模型。我们探讨了这些模型,如生成预训练变换器(GPT)、变换器双向编码器表征(BERT)和其他基于变换器的架构,是如何应用于从各种单细胞数据集中提取有意义的生物学见解的。这些模型解决了植物单细胞基因组学的难题,包括改进细胞类型注释、基因网络建模和多组学整合。此外,我们还评估了生成式对抗网络(GANs)和扩散模型的使用情况,重点关注它们生成高保真合成单细胞数据、减少丢失事件以及处理数据稀疏性和不平衡性的能力。这些人工智能驱动的方法具有巨大的潜力,可以共同加强植物基因组学研究,促进作物抗逆性、生产力和胁迫适应性方面的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing plant single-cell genomics with foundation models
Single-cell genomics, combined with advanced AI models, hold transformative potential for understanding complex biological processes in plants. This article reviews deep-learning approaches in single-cell genomics, focusing on foundation models, a type of large-scale, pretrained, multi-purpose generative AI models. We explore how these models, such as Generative Pre-trained Transformers (GPT), Bidirectional Encoder Representations from Transformers (BERT), and other Transformer-based architectures, are applied to extract meaningful biological insights from diverse single-cell datasets. These models address challenges in plant single-cell genomics, including improved cell-type annotation, gene network modeling, and multi-omics integration. Moreover, we assess the use of Generative Adversarial Networks (GANs) and diffusion models, focusing on their capacity to generate high-fidelity synthetic single-cell data, mitigate dropout events, and handle data sparsity and imbalance. Together, these AI-driven approaches hold immense potential to enhance research in plant genomics, facilitating discoveries in crop resilience, productivity, and stress adaptation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信