血管机械传导中的瞬态受体电位通道

IF 3.2 3区 医学 Q2 PERIPHERAL VASCULAR DISEASE
Alfredo Sanchez Solano, Boris Lavanderos, Elsayed Metwally, Scott Earley
{"title":"血管机械传导中的瞬态受体电位通道","authors":"Alfredo Sanchez Solano, Boris Lavanderos, Elsayed Metwally, Scott Earley","doi":"10.1093/ajh/hpae134","DOIUrl":null,"url":null,"abstract":"<p><p>Transmural pressure and shear stress are mechanical forces that profoundly affect the smooth muscle cells (SMCs) comprising the vascular wall and the endothelial cells (ECs) lining the lumen. Pressure and flow are detected by mechanosensors in these cells and translated into appropriate responses to regulate blood pressure and flow. This review focuses on the role of the transient receptor potential (TRP) superfamily of cation channels in this process. We discuss how specific members of the TRP superfamily (TRPC6, TRPM4, TRPV1, TRPV4, and TRPP1) regulate the resting membrane and intracellular Ca2+ levels in SMCs and ECs to promote changes in vascular tone in response to intraluminal pressure and shear stress. Although TRP channels participate in vascular mechanotransduction, little evidence supports their intrinsic mechanosensitivity. Therefore, we also examine the evidence exploring the force-sensitive signal transduction pathways acting upstream of vascular TRP channels. Understanding the interplay between mechanosensors, force-induced signaling cascades, and TRP channels holds promise for the development of targeted therapies for diseases caused by vascular dysfunction.</p>","PeriodicalId":7578,"journal":{"name":"American Journal of Hypertension","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Receptor Potential Channels in Vascular Mechanotransduction.\",\"authors\":\"Alfredo Sanchez Solano, Boris Lavanderos, Elsayed Metwally, Scott Earley\",\"doi\":\"10.1093/ajh/hpae134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transmural pressure and shear stress are mechanical forces that profoundly affect the smooth muscle cells (SMCs) comprising the vascular wall and the endothelial cells (ECs) lining the lumen. Pressure and flow are detected by mechanosensors in these cells and translated into appropriate responses to regulate blood pressure and flow. This review focuses on the role of the transient receptor potential (TRP) superfamily of cation channels in this process. We discuss how specific members of the TRP superfamily (TRPC6, TRPM4, TRPV1, TRPV4, and TRPP1) regulate the resting membrane and intracellular Ca2+ levels in SMCs and ECs to promote changes in vascular tone in response to intraluminal pressure and shear stress. Although TRP channels participate in vascular mechanotransduction, little evidence supports their intrinsic mechanosensitivity. Therefore, we also examine the evidence exploring the force-sensitive signal transduction pathways acting upstream of vascular TRP channels. Understanding the interplay between mechanosensors, force-induced signaling cascades, and TRP channels holds promise for the development of targeted therapies for diseases caused by vascular dysfunction.</p>\",\"PeriodicalId\":7578,\"journal\":{\"name\":\"American Journal of Hypertension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Hypertension\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ajh/hpae134\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ajh/hpae134","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

摘要

跨壁压力和剪切应力是一种机械力,对构成血管壁的平滑肌细胞(SMC)和衬于管腔的内皮细胞(EC)产生深远影响。这些细胞中的机械传感器可检测到压力和流量,并转化为适当的反应来调节血压和血流。本综述将重点讨论瞬态受体电位(TRP)超家族阳离子通道在这一过程中的作用。我们讨论了 TRP 超家族的特定成员(TRPC6、TRPM4、TRPV1、TRPV4 和 TRPP1)如何调节 SMC 和 EC 的静息膜和细胞内 Ca2+ 水平,从而促进血管张力的变化,以应对腔内压力和剪切应力。虽然 TRP 通道参与了血管的机械传导,但很少有证据支持其内在的机械敏感性。因此,我们还研究了探讨作用于血管 TRP 通道上游的力敏感信号转导途径的证据。了解机械传感器、力诱导信号级联和 TRP 通道之间的相互作用,有望开发出治疗血管功能障碍所致疾病的靶向疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient Receptor Potential Channels in Vascular Mechanotransduction.

Transmural pressure and shear stress are mechanical forces that profoundly affect the smooth muscle cells (SMCs) comprising the vascular wall and the endothelial cells (ECs) lining the lumen. Pressure and flow are detected by mechanosensors in these cells and translated into appropriate responses to regulate blood pressure and flow. This review focuses on the role of the transient receptor potential (TRP) superfamily of cation channels in this process. We discuss how specific members of the TRP superfamily (TRPC6, TRPM4, TRPV1, TRPV4, and TRPP1) regulate the resting membrane and intracellular Ca2+ levels in SMCs and ECs to promote changes in vascular tone in response to intraluminal pressure and shear stress. Although TRP channels participate in vascular mechanotransduction, little evidence supports their intrinsic mechanosensitivity. Therefore, we also examine the evidence exploring the force-sensitive signal transduction pathways acting upstream of vascular TRP channels. Understanding the interplay between mechanosensors, force-induced signaling cascades, and TRP channels holds promise for the development of targeted therapies for diseases caused by vascular dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Hypertension
American Journal of Hypertension 医学-外周血管病
CiteScore
6.90
自引率
6.20%
发文量
144
审稿时长
3-8 weeks
期刊介绍: The American Journal of Hypertension is a monthly, peer-reviewed journal that provides a forum for scientific inquiry of the highest standards in the field of hypertension and related cardiovascular disease. The journal publishes high-quality original research and review articles on basic sciences, molecular biology, clinical and experimental hypertension, cardiology, epidemiology, pediatric hypertension, endocrinology, neurophysiology, and nephrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信