使用 V 波段多层ε-GaδFe2δO3 纳米磁体设计的宽带超薄毫米波吸收器

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Longxin Wan, Xiaofei Xu
{"title":"使用 V 波段多层ε-GaδFe2δO3 纳米磁体设计的宽带超薄毫米波吸收器","authors":"Longxin Wan,&nbsp;Xiaofei Xu","doi":"10.1007/s00339-024-08068-4","DOIUrl":null,"url":null,"abstract":"<div><p>A broadband millimeter wave absorber is designed using multilayered ultra-thin <i>ε</i>-Ga<sub><i>δ</i></sub>Fe<sub>2−<i>δ</i></sub>O<sub>3</sub> nanomagnets in the <i>V</i>-band, where <i>δ</i> is the doping level of the gallium into the host <i>ε</i>-Fe<sub>2</sub>O<sub>3</sub> material. Four different doping levels are considered to build four kinds of <i>ε</i>-Ga<sub><i>δ</i></sub>Fe<sub>2−<i>δ</i></sub>O<sub>3</sub> nanomagnets, which are further stacked as a four-layer broadband absorber. Its absorption properties are theoretically studied using the lossy transmission line theory. Results show that the four-layer nanomagnets can absorb over 90% of perpendicularly incident power from 50.7 to 74.9 GHz in the <i>V</i>-band. The proposed multilayered absorber is ultra-thin with the total thickness of 351 μm. It is only 0.059λ<sub>L</sub>, where λ<sub>L</sub> is the wavelength at the lowest frequency 50.7 GHz. The robustness of the absorbing performance is also studied by slightly varying the four-layer nanomagnets’ doping levels and layer thickness from the default setting.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"130 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband ultra-thin millimeter wave absorber designed using multilayered ε-GaδFe2−δO3 nanomagnets in the V-band\",\"authors\":\"Longxin Wan,&nbsp;Xiaofei Xu\",\"doi\":\"10.1007/s00339-024-08068-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A broadband millimeter wave absorber is designed using multilayered ultra-thin <i>ε</i>-Ga<sub><i>δ</i></sub>Fe<sub>2−<i>δ</i></sub>O<sub>3</sub> nanomagnets in the <i>V</i>-band, where <i>δ</i> is the doping level of the gallium into the host <i>ε</i>-Fe<sub>2</sub>O<sub>3</sub> material. Four different doping levels are considered to build four kinds of <i>ε</i>-Ga<sub><i>δ</i></sub>Fe<sub>2−<i>δ</i></sub>O<sub>3</sub> nanomagnets, which are further stacked as a four-layer broadband absorber. Its absorption properties are theoretically studied using the lossy transmission line theory. Results show that the four-layer nanomagnets can absorb over 90% of perpendicularly incident power from 50.7 to 74.9 GHz in the <i>V</i>-band. The proposed multilayered absorber is ultra-thin with the total thickness of 351 μm. It is only 0.059λ<sub>L</sub>, where λ<sub>L</sub> is the wavelength at the lowest frequency 50.7 GHz. The robustness of the absorbing performance is also studied by slightly varying the four-layer nanomagnets’ doping levels and layer thickness from the default setting.</p></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"130 12\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-024-08068-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08068-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用 V 波段多层超薄ε-GaδFe2-δO3 纳米磁体设计了一种宽带毫米波吸收器,其中 δ 是镓在主ε-Fe2O3 材料中的掺杂水平。考虑了四种不同的掺杂水平,构建了四种ε-GaδFe2-δO3 纳米磁体,并将其进一步叠加为四层宽带吸收器。利用有损传输线理论对其吸收特性进行了理论研究。结果表明,四层纳米磁体可吸收 V 波段 50.7 至 74.9 GHz 垂直入射功率的 90% 以上。所提出的多层吸收器超薄,总厚度为 351 μm。它只有 0.059λL,其中 λL 是最低频率 50.7 GHz 时的波长。通过在默认设置的基础上稍微改变四层纳米磁体的掺杂水平和层厚度,还研究了吸收性能的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broadband ultra-thin millimeter wave absorber designed using multilayered ε-GaδFe2−δO3 nanomagnets in the V-band

A broadband millimeter wave absorber is designed using multilayered ultra-thin ε-GaδFe2−δO3 nanomagnets in the V-band, where δ is the doping level of the gallium into the host ε-Fe2O3 material. Four different doping levels are considered to build four kinds of ε-GaδFe2−δO3 nanomagnets, which are further stacked as a four-layer broadband absorber. Its absorption properties are theoretically studied using the lossy transmission line theory. Results show that the four-layer nanomagnets can absorb over 90% of perpendicularly incident power from 50.7 to 74.9 GHz in the V-band. The proposed multilayered absorber is ultra-thin with the total thickness of 351 μm. It is only 0.059λL, where λL is the wavelength at the lowest frequency 50.7 GHz. The robustness of the absorbing performance is also studied by slightly varying the four-layer nanomagnets’ doping levels and layer thickness from the default setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信