揭示 nZVI-SiO2-TiO2 纳米复合材料修复染料污染废水的协同效应†。

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Murtala Namakka, Md Rezaur Rahman, Khairul Anwar Mohamad Bin Said, King Kuok Kuok, Fahmi Asyadi Md Yusof, Muneera S. M. Al-Saleem, Jehan Y. Al-Humaidi and Mohammed M. Rahman
{"title":"揭示 nZVI-SiO2-TiO2 纳米复合材料修复染料污染废水的协同效应†。","authors":"Murtala Namakka, Md Rezaur Rahman, Khairul Anwar Mohamad Bin Said, King Kuok Kuok, Fahmi Asyadi Md Yusof, Muneera S. M. Al-Saleem, Jehan Y. Al-Humaidi and Mohammed M. Rahman","doi":"10.1039/D4MA00853G","DOIUrl":null,"url":null,"abstract":"<p >Water contamination and scarcity pose critical global challenges. Existing water remediation technologies such as membrane technologies lack hydrophilic surface properties, prompting the need for novel, highly efficient supportive materials. Photocatalysis emerges as a promising solution for degrading organic pollutants in wastewater. However, existing photocatalysts such as titanium dioxide (TiO<small><sub>2</sub></small>) suffer from rapid recombination of photogenerated charge carriers and lower catalytic activity, hindering performance. Herein, a novel, high sorption capacity nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> nanocomposite material was synthesized <em>via</em> a combined chemical reduction approach. The influence of synthesis pH and the synergistic effects of nZVI, SiO<small><sub>2</sub></small>, and TiO<small><sub>2</sub></small> on the physicochemical properties and overall performance of the nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> nanocomposite were investigated. Three sets of nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> nanocomposites were synthesized by varying synthesis pH from 2 to 4. MB dye degradation experiments and thermal analysis revealed that the nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> nanocomposite synthesized under pH 2 synthesis conditions exhibited the fastest dye degradation rate, highest removal efficiency (100%), and thermal stability. Characterization techniques, including FTIR, EDS (energy dispersive X-ray spectroscopy), SEM, BET (Brunauer–Emmett–Teller), XRD, TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry), revealed that lower nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> synthesis pH enhanced the material's specific surface area, crystallinity, and the interfacial interactions of nZVI, SiO<small><sub>2</sub></small>, and TiO<small><sub>2</sub></small> components in the nanocomposite. The reusability test showed &gt;90% efficiency after 5 successive cycles. The sorption mechanism and methylene blue (MB) dye speciation test corroborated the synergistic adsorption and reduction potential of nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> functional materials with 100% mineralized methylene blue (MB<small><sup>+</sup></small> species) at MB dye solution pH above 6.0. After economic considerations, it is believed that the exceptional adsorption and recycling abilities of the novel nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> material, coupled with its thermal stability, could counterbalance its upfront expenses, potentially making it a feasible choice for wastewater treatment applications.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 23","pages":" 9292-9313"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00853g?page=search","citationCount":"0","resultStr":"{\"title\":\"Unveiling the synergistic effect of an nZVI–SiO2–TiO2 nanocomposite for the remediation of dye contaminated wastewater†\",\"authors\":\"Murtala Namakka, Md Rezaur Rahman, Khairul Anwar Mohamad Bin Said, King Kuok Kuok, Fahmi Asyadi Md Yusof, Muneera S. M. Al-Saleem, Jehan Y. Al-Humaidi and Mohammed M. Rahman\",\"doi\":\"10.1039/D4MA00853G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Water contamination and scarcity pose critical global challenges. Existing water remediation technologies such as membrane technologies lack hydrophilic surface properties, prompting the need for novel, highly efficient supportive materials. Photocatalysis emerges as a promising solution for degrading organic pollutants in wastewater. However, existing photocatalysts such as titanium dioxide (TiO<small><sub>2</sub></small>) suffer from rapid recombination of photogenerated charge carriers and lower catalytic activity, hindering performance. Herein, a novel, high sorption capacity nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> nanocomposite material was synthesized <em>via</em> a combined chemical reduction approach. The influence of synthesis pH and the synergistic effects of nZVI, SiO<small><sub>2</sub></small>, and TiO<small><sub>2</sub></small> on the physicochemical properties and overall performance of the nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> nanocomposite were investigated. Three sets of nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> nanocomposites were synthesized by varying synthesis pH from 2 to 4. MB dye degradation experiments and thermal analysis revealed that the nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> nanocomposite synthesized under pH 2 synthesis conditions exhibited the fastest dye degradation rate, highest removal efficiency (100%), and thermal stability. Characterization techniques, including FTIR, EDS (energy dispersive X-ray spectroscopy), SEM, BET (Brunauer–Emmett–Teller), XRD, TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry), revealed that lower nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> synthesis pH enhanced the material's specific surface area, crystallinity, and the interfacial interactions of nZVI, SiO<small><sub>2</sub></small>, and TiO<small><sub>2</sub></small> components in the nanocomposite. The reusability test showed &gt;90% efficiency after 5 successive cycles. The sorption mechanism and methylene blue (MB) dye speciation test corroborated the synergistic adsorption and reduction potential of nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> functional materials with 100% mineralized methylene blue (MB<small><sup>+</sup></small> species) at MB dye solution pH above 6.0. After economic considerations, it is believed that the exceptional adsorption and recycling abilities of the novel nZVI–SiO<small><sub>2</sub></small>–TiO<small><sub>2</sub></small> material, coupled with its thermal stability, could counterbalance its upfront expenses, potentially making it a feasible choice for wastewater treatment applications.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 23\",\"pages\":\" 9292-9313\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00853g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00853g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00853g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水污染和水资源匮乏构成了严峻的全球性挑战。现有的水修复技术(如膜技术)缺乏亲水性表面特性,因此需要新型、高效的辅助材料。光催化技术是降解废水中有机污染物的一种前景广阔的解决方案。然而,现有的光催化剂(如二氧化钛 (TiO2))存在光生电荷载流子快速重组和催化活性较低的问题,从而影响了其性能。本文通过化学还原联合方法合成了一种新型、高吸附容量的 nZVI-SiO2-TiO2 纳米复合材料。研究了合成 pH 值以及 nZVI、SiO2 和 TiO2 的协同作用对 nZVI-SiO2-TiO2 纳米复合材料理化性质和综合性能的影响。通过改变合成 pH 值(2 至 4)合成了三组 nZVI-SiO2-TiO2 纳米复合材料。MB 染料降解实验和热分析表明,在 pH 值为 2 的合成条件下合成的 nZVI-SiO2-TiO2 纳米复合材料具有最快的染料降解速度、最高的去除效率(100%)和热稳定性。傅立叶变换红外光谱(FTIR)、能量色散 X 射线光谱(EDS)、扫描电子显微镜(SEM)、BET(Brunauer-Emmett-Teller)、XRD、TGA(热重分析)和 DSC(差示扫描量热法)等表征技术表明,较低的 nZVI-SiO2-TiO2 合成 pH 值提高了材料的比表面积、结晶度以及纳米复合材料中 nZVI、SiO2 和 TiO2 成分的界面相互作用。可重复使用性测试表明,经过 5 次连续循环后,该材料的使用效率达到 90%。吸附机理和亚甲基蓝(MB)染料种类测试证实了 nZVI-SiO2-TiO2 功能材料的协同吸附和还原潜力,在亚甲基蓝(MB)染料溶液 pH 值高于 6.0 时,亚甲基蓝(MB+ 种类)100% 矿化。从经济角度考虑,新型 nZVI-SiO2-TiO2 材料具有卓越的吸附和回收能力,加上其热稳定性,可以抵消其前期费用,使其有可能成为废水处理应用的可行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the synergistic effect of an nZVI–SiO2–TiO2 nanocomposite for the remediation of dye contaminated wastewater†

Unveiling the synergistic effect of an nZVI–SiO2–TiO2 nanocomposite for the remediation of dye contaminated wastewater†

Water contamination and scarcity pose critical global challenges. Existing water remediation technologies such as membrane technologies lack hydrophilic surface properties, prompting the need for novel, highly efficient supportive materials. Photocatalysis emerges as a promising solution for degrading organic pollutants in wastewater. However, existing photocatalysts such as titanium dioxide (TiO2) suffer from rapid recombination of photogenerated charge carriers and lower catalytic activity, hindering performance. Herein, a novel, high sorption capacity nZVI–SiO2–TiO2 nanocomposite material was synthesized via a combined chemical reduction approach. The influence of synthesis pH and the synergistic effects of nZVI, SiO2, and TiO2 on the physicochemical properties and overall performance of the nZVI–SiO2–TiO2 nanocomposite were investigated. Three sets of nZVI–SiO2–TiO2 nanocomposites were synthesized by varying synthesis pH from 2 to 4. MB dye degradation experiments and thermal analysis revealed that the nZVI–SiO2–TiO2 nanocomposite synthesized under pH 2 synthesis conditions exhibited the fastest dye degradation rate, highest removal efficiency (100%), and thermal stability. Characterization techniques, including FTIR, EDS (energy dispersive X-ray spectroscopy), SEM, BET (Brunauer–Emmett–Teller), XRD, TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry), revealed that lower nZVI–SiO2–TiO2 synthesis pH enhanced the material's specific surface area, crystallinity, and the interfacial interactions of nZVI, SiO2, and TiO2 components in the nanocomposite. The reusability test showed >90% efficiency after 5 successive cycles. The sorption mechanism and methylene blue (MB) dye speciation test corroborated the synergistic adsorption and reduction potential of nZVI–SiO2–TiO2 functional materials with 100% mineralized methylene blue (MB+ species) at MB dye solution pH above 6.0. After economic considerations, it is believed that the exceptional adsorption and recycling abilities of the novel nZVI–SiO2–TiO2 material, coupled with its thermal stability, could counterbalance its upfront expenses, potentially making it a feasible choice for wastewater treatment applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信