Sandra Beirão, Patrícia M.R. Pereira, Rosa Fernandes, João P.C. Tomé
{"title":"老年黄斑变性光动力疗法中的光敏剂配方","authors":"Sandra Beirão, Patrícia M.R. Pereira, Rosa Fernandes, João P.C. Tomé","doi":"10.1016/j.ejmech.2024.117105","DOIUrl":null,"url":null,"abstract":"Age-related macular degeneration (AMD) is a progressive degenerative disease that leads to visual impairment, predominantly affecting the elderly. Despite significant advancements in treatment, a definitive cure remains elusive. Current therapeutic strategies only slow down disease progression, inhibiting abnormal blood vessels growth, and preserving or improving vision. Among these strategies, photodynamic therapy (PDT) has emerged as a promising treatment, particularly for neovascular form, the most severe form of the disease. Although several photosensitizers (PS) have been developed, only one has received clinical approval for use in AMD. This treatment involves the intravenous administration of a photosensitizing agent that preferentially accumulates in the abnormal blood vessels beneath the macula. Upon activation by targeted laser light, the PS triggers photochemical reactions, leading to vascular occlusion and the reduction of choroidal neovascularization. This review provides a comprehensive overview of both experimental and clinical studies on PDT for AMD, discussing the current state of research, challenges in treatment optimization, and potential future directions to enhance this therapeutic approach.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"18 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photosensitizer formulations in photodynamic therapy of age-related macular degeneration\",\"authors\":\"Sandra Beirão, Patrícia M.R. Pereira, Rosa Fernandes, João P.C. Tomé\",\"doi\":\"10.1016/j.ejmech.2024.117105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Age-related macular degeneration (AMD) is a progressive degenerative disease that leads to visual impairment, predominantly affecting the elderly. Despite significant advancements in treatment, a definitive cure remains elusive. Current therapeutic strategies only slow down disease progression, inhibiting abnormal blood vessels growth, and preserving or improving vision. Among these strategies, photodynamic therapy (PDT) has emerged as a promising treatment, particularly for neovascular form, the most severe form of the disease. Although several photosensitizers (PS) have been developed, only one has received clinical approval for use in AMD. This treatment involves the intravenous administration of a photosensitizing agent that preferentially accumulates in the abnormal blood vessels beneath the macula. Upon activation by targeted laser light, the PS triggers photochemical reactions, leading to vascular occlusion and the reduction of choroidal neovascularization. This review provides a comprehensive overview of both experimental and clinical studies on PDT for AMD, discussing the current state of research, challenges in treatment optimization, and potential future directions to enhance this therapeutic approach.\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejmech.2024.117105\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117105","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Photosensitizer formulations in photodynamic therapy of age-related macular degeneration
Age-related macular degeneration (AMD) is a progressive degenerative disease that leads to visual impairment, predominantly affecting the elderly. Despite significant advancements in treatment, a definitive cure remains elusive. Current therapeutic strategies only slow down disease progression, inhibiting abnormal blood vessels growth, and preserving or improving vision. Among these strategies, photodynamic therapy (PDT) has emerged as a promising treatment, particularly for neovascular form, the most severe form of the disease. Although several photosensitizers (PS) have been developed, only one has received clinical approval for use in AMD. This treatment involves the intravenous administration of a photosensitizing agent that preferentially accumulates in the abnormal blood vessels beneath the macula. Upon activation by targeted laser light, the PS triggers photochemical reactions, leading to vascular occlusion and the reduction of choroidal neovascularization. This review provides a comprehensive overview of both experimental and clinical studies on PDT for AMD, discussing the current state of research, challenges in treatment optimization, and potential future directions to enhance this therapeutic approach.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.