为三维自下而上电极设计定制多孔 N-掺杂碳纳米球:与粒径无关的孔径控制的多功能合成工具箱

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-24 DOI:10.1002/smll.202407235
Niklas Ortlieb, Taisiia Berestok, Patrick Elsässer, Ralf Thomann, Markus Knäbbeler-Buß, Anna Fischer
{"title":"为三维自下而上电极设计定制多孔 N-掺杂碳纳米球:与粒径无关的孔径控制的多功能合成工具箱","authors":"Niklas Ortlieb,&nbsp;Taisiia Berestok,&nbsp;Patrick Elsässer,&nbsp;Ralf Thomann,&nbsp;Markus Knäbbeler-Buß,&nbsp;Anna Fischer","doi":"10.1002/smll.202407235","DOIUrl":null,"url":null,"abstract":"<p>The rational design of carbon-based electrode materials plays an important role in improving the electrochemical properties of both, energy storage and energy conversion electrodes and devices. For most applications, well-defined and easily processable porous carbon-based electrode materials with controlled particle morphology (ideally spherical), particle size, and intraparticle pore size are desired. Here, a hard-templating synthesis toolbox is reported for highly-monodisperse meso- and macroporous N-doped carbon nanospheres (MPNCs) as a versatile material platform for the 3D bottom-up design of porous electrodes. With this approach, it is possible to change the MPNC pore size without affecting the particle size. By changing the template size, the pore size is adjusted between 15 and 99 nm while maintaining a particle size ≈300 nm. MPNCs are further used in electrochemical double-layer capacitors (EDLCs) as model application to demonstrate pore size effects on the performance independently from particle size effects, resulting in increasing specific capacitances for decreasing pores sizes, which correlates well with the surface area of the MPNCs and mass transport phenomena in the electrode. In conclusion, the toolbox allows to control intraparticulate porosities while keeping interparticulate properties constant, essential parameters to enable a true bottom-up 3D electrode design.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 2","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202407235","citationCount":"0","resultStr":"{\"title\":\"Tailoring Porous N-Doped Carbon Nanospheres for 3D Bottom-Up Electrode Design: A Versatile Synthesis Toolbox for Particle Size Independent Pore Size Control\",\"authors\":\"Niklas Ortlieb,&nbsp;Taisiia Berestok,&nbsp;Patrick Elsässer,&nbsp;Ralf Thomann,&nbsp;Markus Knäbbeler-Buß,&nbsp;Anna Fischer\",\"doi\":\"10.1002/smll.202407235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rational design of carbon-based electrode materials plays an important role in improving the electrochemical properties of both, energy storage and energy conversion electrodes and devices. For most applications, well-defined and easily processable porous carbon-based electrode materials with controlled particle morphology (ideally spherical), particle size, and intraparticle pore size are desired. Here, a hard-templating synthesis toolbox is reported for highly-monodisperse meso- and macroporous N-doped carbon nanospheres (MPNCs) as a versatile material platform for the 3D bottom-up design of porous electrodes. With this approach, it is possible to change the MPNC pore size without affecting the particle size. By changing the template size, the pore size is adjusted between 15 and 99 nm while maintaining a particle size ≈300 nm. MPNCs are further used in electrochemical double-layer capacitors (EDLCs) as model application to demonstrate pore size effects on the performance independently from particle size effects, resulting in increasing specific capacitances for decreasing pores sizes, which correlates well with the surface area of the MPNCs and mass transport phenomena in the electrode. In conclusion, the toolbox allows to control intraparticulate porosities while keeping interparticulate properties constant, essential parameters to enable a true bottom-up 3D electrode design.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 2\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202407235\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202407235\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202407235","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳基电极材料的合理设计在改善储能和能量转换电极及装置的电化学特性方面发挥着重要作用。对于大多数应用而言,需要定义明确且易于加工的多孔碳基电极材料,其颗粒形态(理想情况下为球形)、颗粒大小和颗粒内孔隙大小都应可控。本文报告了一种高单分散中孔和大孔 N-掺杂碳纳米球(MPNCs)的硬模板合成工具箱,它是自下而上三维设计多孔电极的通用材料平台。利用这种方法,可以在不影响粒径的情况下改变 MPNC 的孔径。通过改变模板尺寸,孔径可在 15 到 99 nm 之间调整,同时保持粒径≈300 nm。MPNC 进一步被用作电化学双层电容器(EDLC)的模型应用,以证明孔径对性能的影响独立于颗粒尺寸的影响,结果是孔径减小,比电容增大,这与 MPNC 的表面积和电极中的质量传输现象密切相关。总之,该工具箱可以控制微粒内孔隙率,同时保持微粒间特性不变,这些都是实现真正自下而上三维电极设计的基本参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring Porous N-Doped Carbon Nanospheres for 3D Bottom-Up Electrode Design: A Versatile Synthesis Toolbox for Particle Size Independent Pore Size Control

Tailoring Porous N-Doped Carbon Nanospheres for 3D Bottom-Up Electrode Design: A Versatile Synthesis Toolbox for Particle Size Independent Pore Size Control

Tailoring Porous N-Doped Carbon Nanospheres for 3D Bottom-Up Electrode Design: A Versatile Synthesis Toolbox for Particle Size Independent Pore Size Control

The rational design of carbon-based electrode materials plays an important role in improving the electrochemical properties of both, energy storage and energy conversion electrodes and devices. For most applications, well-defined and easily processable porous carbon-based electrode materials with controlled particle morphology (ideally spherical), particle size, and intraparticle pore size are desired. Here, a hard-templating synthesis toolbox is reported for highly-monodisperse meso- and macroporous N-doped carbon nanospheres (MPNCs) as a versatile material platform for the 3D bottom-up design of porous electrodes. With this approach, it is possible to change the MPNC pore size without affecting the particle size. By changing the template size, the pore size is adjusted between 15 and 99 nm while maintaining a particle size ≈300 nm. MPNCs are further used in electrochemical double-layer capacitors (EDLCs) as model application to demonstrate pore size effects on the performance independently from particle size effects, resulting in increasing specific capacitances for decreasing pores sizes, which correlates well with the surface area of the MPNCs and mass transport phenomena in the electrode. In conclusion, the toolbox allows to control intraparticulate porosities while keeping interparticulate properties constant, essential parameters to enable a true bottom-up 3D electrode design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信