利用自适应 RBF 神经网络对永磁球形电机进行主动干扰抑制控制。

Xiwen Guo, Ao Tan, Qunjing Wang, Guoli Li, Yuming Sun, Qiyong Yang
{"title":"利用自适应 RBF 神经网络对永磁球形电机进行主动干扰抑制控制。","authors":"Xiwen Guo, Ao Tan, Qunjing Wang, Guoli Li, Yuming Sun, Qiyong Yang","doi":"10.1016/j.isatra.2024.11.020","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the issues of low tracking accuracy and poor robustness in the trajectory tracking control of a permanent magnet spherical motor (PMSpM), an active disturbance rejection control (ADRC) scheme combining neural networks is put forward in this research. The unknown total disturbance is approximated by employing a radial basis function (RBF) neural network, with weights updated by an adaptive law and compensated for through the nonlinear feedback loop. This approach addresses the problem of performance degradation of the extended state observer under severe total disturbance, thereby ensuring accurate tracking of the PMSpM. Comparative simulations are accomplished to evaluate the performance of the RBF-ADRC scheme in enhancing disturbance rejection capability and robustness. Experimental results from the planar circular motion experiment on the PMSpM test platform validate the application value of the scheme.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active disturbance rejection control with adaptive RBF neural network for a permanent magnet spherical motor.\",\"authors\":\"Xiwen Guo, Ao Tan, Qunjing Wang, Guoli Li, Yuming Sun, Qiyong Yang\",\"doi\":\"10.1016/j.isatra.2024.11.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the issues of low tracking accuracy and poor robustness in the trajectory tracking control of a permanent magnet spherical motor (PMSpM), an active disturbance rejection control (ADRC) scheme combining neural networks is put forward in this research. The unknown total disturbance is approximated by employing a radial basis function (RBF) neural network, with weights updated by an adaptive law and compensated for through the nonlinear feedback loop. This approach addresses the problem of performance degradation of the extended state observer under severe total disturbance, thereby ensuring accurate tracking of the PMSpM. Comparative simulations are accomplished to evaluate the performance of the RBF-ADRC scheme in enhancing disturbance rejection capability and robustness. Experimental results from the planar circular motion experiment on the PMSpM test platform validate the application value of the scheme.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.11.020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.11.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对永磁球形电机(PMSpM)轨迹跟踪控制中跟踪精度低和鲁棒性差的问题,本研究提出了一种结合神经网络的主动干扰抑制控制(ADRC)方案。采用径向基函数(RBF)神经网络对未知总扰动进行近似,通过自适应法则更新权重,并通过非线性反馈回路进行补偿。这种方法解决了扩展状态观测器在严重总干扰下性能下降的问题,从而确保了 PMSpM 的精确跟踪。通过对比模拟,评估了 RBF-ADRC 方案在增强干扰抑制能力和鲁棒性方面的性能。在 PMSpM 测试平台上进行的平面圆周运动实验结果验证了该方案的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active disturbance rejection control with adaptive RBF neural network for a permanent magnet spherical motor.

In response to the issues of low tracking accuracy and poor robustness in the trajectory tracking control of a permanent magnet spherical motor (PMSpM), an active disturbance rejection control (ADRC) scheme combining neural networks is put forward in this research. The unknown total disturbance is approximated by employing a radial basis function (RBF) neural network, with weights updated by an adaptive law and compensated for through the nonlinear feedback loop. This approach addresses the problem of performance degradation of the extended state observer under severe total disturbance, thereby ensuring accurate tracking of the PMSpM. Comparative simulations are accomplished to evaluate the performance of the RBF-ADRC scheme in enhancing disturbance rejection capability and robustness. Experimental results from the planar circular motion experiment on the PMSpM test platform validate the application value of the scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信