CD74 通过诱导耐受性树突状细胞和调节性 B 细胞的扩增,促进小鼠三阴性乳腺癌免疫抑制性肿瘤微环境的形成。

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2024-11-22 eCollection Date: 2024-11-01 DOI:10.1371/journal.pbio.3002905
Bianca Pellegrino, Keren David, Stav Rabani, Bar Lampert, Thuy Tran, Edward Doherty, Marta Piecychna, Roberto Meza-Romero, Lin Leng, Dov Hershkovitz, Arthur A Vandenbark, Richard Bucala, Shirly Becker-Herman, Idit Shachar
{"title":"CD74 通过诱导耐受性树突状细胞和调节性 B 细胞的扩增,促进小鼠三阴性乳腺癌免疫抑制性肿瘤微环境的形成。","authors":"Bianca Pellegrino, Keren David, Stav Rabani, Bar Lampert, Thuy Tran, Edward Doherty, Marta Piecychna, Roberto Meza-Romero, Lin Leng, Dov Hershkovitz, Arthur A Vandenbark, Richard Bucala, Shirly Becker-Herman, Idit Shachar","doi":"10.1371/journal.pbio.3002905","DOIUrl":null,"url":null,"abstract":"<p><p>CD74 is a cell-surface receptor for the cytokine macrophage migration inhibitory factor (MIF). MIF binding to CD74 induces a signaling cascade resulting in the release of its cytosolic intracellular domain (CD74-ICD), which regulates transcription in naïve B and chronic lymphocytic leukemia (CLL) cells. In the current study, we investigated the role of CD74 in the regulation of the immunosuppressive tumor microenvironment (TME) in triple-negative breast cancer (TNBC). TNBC is the most aggressive breast cancer subtype and is characterized by massive infiltration of immune cells to the tumor microenvironment, making this tumor a good candidate for immunotherapy. The tumor and immune cells in TNBC express high levels of CD74; however, the function of this receptor in the tumor environment has not been extensively characterized. Regulatory B cells (Bregs) and tolerogenic dendritic cells (tol-DCs) were previously shown to attenuate the antitumor immune response in TNBC. Here, we demonstrate that CD74 enhances tumor growth by inducing the expansion of tumor-infiltrating tol-DCs and Bregs. Utilizing CD74-KO mice, Cre-flox mice lacking CD74 in CD23+ mature B cells, mice lacking CD74 in the CD11c+ population, and a CD74 inhibitor (DRQ), we elucidate the mechanism by which CD74 inhibits antitumor immunity. MIF secreted from the tumor cells activates CD74 expressed on DCs. This activation induces the binding of CD74-ICD to the SP1 promotor, resulting in the up-regulation of SP1 expression. SP1 binds the IL-1β promotor, leading to the down-regulation of its transcription. The reduced levels of IL-1β lead to decreased antitumor activity by allowing expansion of the tol-DC, which induces the expansion of the Breg population, supporting the cross-talk between these 2 populations. Taken together, these results suggest that CD74+ CD11c+ DCs are the dominant cell type involved in the regulation of TNBC progression. These findings indicate that CD74 might serve as a novel therapeutic target in TNBC.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002905"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623796/pdf/","citationCount":"0","resultStr":"{\"title\":\"CD74 promotes the formation of an immunosuppressive tumor microenvironment in triple-negative breast cancer in mice by inducing the expansion of tolerogenic dendritic cells and regulatory B cells.\",\"authors\":\"Bianca Pellegrino, Keren David, Stav Rabani, Bar Lampert, Thuy Tran, Edward Doherty, Marta Piecychna, Roberto Meza-Romero, Lin Leng, Dov Hershkovitz, Arthur A Vandenbark, Richard Bucala, Shirly Becker-Herman, Idit Shachar\",\"doi\":\"10.1371/journal.pbio.3002905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CD74 is a cell-surface receptor for the cytokine macrophage migration inhibitory factor (MIF). MIF binding to CD74 induces a signaling cascade resulting in the release of its cytosolic intracellular domain (CD74-ICD), which regulates transcription in naïve B and chronic lymphocytic leukemia (CLL) cells. In the current study, we investigated the role of CD74 in the regulation of the immunosuppressive tumor microenvironment (TME) in triple-negative breast cancer (TNBC). TNBC is the most aggressive breast cancer subtype and is characterized by massive infiltration of immune cells to the tumor microenvironment, making this tumor a good candidate for immunotherapy. The tumor and immune cells in TNBC express high levels of CD74; however, the function of this receptor in the tumor environment has not been extensively characterized. Regulatory B cells (Bregs) and tolerogenic dendritic cells (tol-DCs) were previously shown to attenuate the antitumor immune response in TNBC. Here, we demonstrate that CD74 enhances tumor growth by inducing the expansion of tumor-infiltrating tol-DCs and Bregs. Utilizing CD74-KO mice, Cre-flox mice lacking CD74 in CD23+ mature B cells, mice lacking CD74 in the CD11c+ population, and a CD74 inhibitor (DRQ), we elucidate the mechanism by which CD74 inhibits antitumor immunity. MIF secreted from the tumor cells activates CD74 expressed on DCs. This activation induces the binding of CD74-ICD to the SP1 promotor, resulting in the up-regulation of SP1 expression. SP1 binds the IL-1β promotor, leading to the down-regulation of its transcription. The reduced levels of IL-1β lead to decreased antitumor activity by allowing expansion of the tol-DC, which induces the expansion of the Breg population, supporting the cross-talk between these 2 populations. Taken together, these results suggest that CD74+ CD11c+ DCs are the dominant cell type involved in the regulation of TNBC progression. These findings indicate that CD74 might serve as a novel therapeutic target in TNBC.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"22 11\",\"pages\":\"e3002905\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002905\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002905","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

CD74 是细胞因子巨噬细胞迁移抑制因子(MIF)的细胞表面受体。MIF 与 CD74 结合会诱导一个信号级联,导致其细胞膜胞内结构域(CD74-ICD)的释放,从而调节幼稚 B 细胞和慢性淋巴细胞白血病(CLL)细胞的转录。在本研究中,我们探讨了 CD74 在三阴性乳腺癌(TNBC)免疫抑制性肿瘤微环境(TME)调控中的作用。TNBC 是侵袭性最强的乳腺癌亚型,其特点是免疫细胞大量浸润肿瘤微环境,因此该肿瘤是免疫疗法的良好候选者。TNBC 中的肿瘤细胞和免疫细胞表达高水平的 CD74;然而,这种受体在肿瘤环境中的功能尚未得到广泛表征。调节性 B 细胞(Bregs)和耐受性树突状细胞(tol-DCs)曾被证明会减弱 TNBC 的抗肿瘤免疫反应。在这里,我们证明了 CD74 可通过诱导肿瘤浸润性 tol-DCs 和 Bregs 的扩增来促进肿瘤生长。利用CD74-KO小鼠、CD23+成熟B细胞中缺乏CD74的Cre-flox小鼠、CD11c+群体中缺乏CD74的小鼠以及CD74抑制剂(DRQ),我们阐明了CD74抑制抗肿瘤免疫的机制。肿瘤细胞分泌的 MIF 可激活 DCs 上表达的 CD74。这种活化诱导 CD74-ICD 与 SP1 启动子结合,导致 SP1 表达上调。SP1 与 IL-1β 启动子结合,导致其转录下调。IL-1β 水平的降低导致 tol-DC 的扩增,从而诱导 Breg 群体的扩增,从而降低了抗肿瘤活性,支持了这两个群体之间的交叉对话。综上所述,这些结果表明,CD74+ CD11c+ DC 是参与 TNBC 进展调控的主要细胞类型。这些发现表明,CD74 可作为 TNBC 的新型治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CD74 promotes the formation of an immunosuppressive tumor microenvironment in triple-negative breast cancer in mice by inducing the expansion of tolerogenic dendritic cells and regulatory B cells.

CD74 is a cell-surface receptor for the cytokine macrophage migration inhibitory factor (MIF). MIF binding to CD74 induces a signaling cascade resulting in the release of its cytosolic intracellular domain (CD74-ICD), which regulates transcription in naïve B and chronic lymphocytic leukemia (CLL) cells. In the current study, we investigated the role of CD74 in the regulation of the immunosuppressive tumor microenvironment (TME) in triple-negative breast cancer (TNBC). TNBC is the most aggressive breast cancer subtype and is characterized by massive infiltration of immune cells to the tumor microenvironment, making this tumor a good candidate for immunotherapy. The tumor and immune cells in TNBC express high levels of CD74; however, the function of this receptor in the tumor environment has not been extensively characterized. Regulatory B cells (Bregs) and tolerogenic dendritic cells (tol-DCs) were previously shown to attenuate the antitumor immune response in TNBC. Here, we demonstrate that CD74 enhances tumor growth by inducing the expansion of tumor-infiltrating tol-DCs and Bregs. Utilizing CD74-KO mice, Cre-flox mice lacking CD74 in CD23+ mature B cells, mice lacking CD74 in the CD11c+ population, and a CD74 inhibitor (DRQ), we elucidate the mechanism by which CD74 inhibits antitumor immunity. MIF secreted from the tumor cells activates CD74 expressed on DCs. This activation induces the binding of CD74-ICD to the SP1 promotor, resulting in the up-regulation of SP1 expression. SP1 binds the IL-1β promotor, leading to the down-regulation of its transcription. The reduced levels of IL-1β lead to decreased antitumor activity by allowing expansion of the tol-DC, which induces the expansion of the Breg population, supporting the cross-talk between these 2 populations. Taken together, these results suggest that CD74+ CD11c+ DCs are the dominant cell type involved in the regulation of TNBC progression. These findings indicate that CD74 might serve as a novel therapeutic target in TNBC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信