{"title":"繁殖形成的浮游微囊藻和底栖镜藻诱发幼年鲢鱼和鳙鱼的氧化应激和炎症反应。","authors":"Huiting Yang, Yujia Yao, Xiaohong Gu, Huihui Chen, Qingfei Zeng, Zhigang Mao, Tao Xiang","doi":"10.1016/j.toxicon.2024.108183","DOIUrl":null,"url":null,"abstract":"<p><p>As global warming and water eutrophication, the multiple proliferation of harmful cyanobacteria can form algal blooms and cause serious ecological problems. In recent years, the large-scale and persistent cyanobacterial blooms occur frequently worldwide and have attracted widespread attention due to the harmful impacts. Among these harmful bloom-forming cyanobacteria, the ecological and toxicological impacts of planktonic cyanobacteria have been extensively studied. However, research on the ecological risks and adverse effects of harmful benthic cyanobacteria is lagging. Filter-feeding fish could suffer from more toxic stimuli than other fish due to their special feeding habits. To investigate and compare the complex toxic effects of different kinds of harmful cyanobacteria on fish, three different-sized (i.e. small, medium, and large) juvenile silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were exposed to cyanobacterial blooms-related density (1 × 10<sup>6</sup> cells/mL) of Microcystis aeruginosa (i.e. generating microcystins) and Oscillatoria sp. (i.e. generating cylindrospermopsin) for 3 d, after which biomarkers of oxidative stress and inflammation in the liver of fish were detected. The silver carp and bighead carp can effectively ingest Microcystis cells but cannot effectively ingest Oscillatoria cells through the measurement of the levels of cyanotoxins. Both Microcystis and Oscillatoria cells can induce different levels of oxidative stress and inflammatory responses in the liver of these juvenile filter-feeding fish via altering the biochemical parameters of the antioxidant system (e.g. superoxide dismutase activity) and immune system (e.g. interleukin-1β level). Therefore, our research identified potential data gaps that how the different types of cyanobacteria induce toxic effects in the liver of juvenile filter-feeding fish in a short time. This study contributes to a better understanding of the short-term adverse effects of different cyanobacterial species on juvenile fish, suggesting that the benthic toxic cyanobacteria-induced ecological and health risks require further attention.</p>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":" ","pages":"108183"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bloom-forming planktonic Microcystis and benthic Oscillatoria-induced oxidative stress and inflammatory responses in juvenile silver carp and bighead carp.\",\"authors\":\"Huiting Yang, Yujia Yao, Xiaohong Gu, Huihui Chen, Qingfei Zeng, Zhigang Mao, Tao Xiang\",\"doi\":\"10.1016/j.toxicon.2024.108183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As global warming and water eutrophication, the multiple proliferation of harmful cyanobacteria can form algal blooms and cause serious ecological problems. In recent years, the large-scale and persistent cyanobacterial blooms occur frequently worldwide and have attracted widespread attention due to the harmful impacts. Among these harmful bloom-forming cyanobacteria, the ecological and toxicological impacts of planktonic cyanobacteria have been extensively studied. However, research on the ecological risks and adverse effects of harmful benthic cyanobacteria is lagging. Filter-feeding fish could suffer from more toxic stimuli than other fish due to their special feeding habits. To investigate and compare the complex toxic effects of different kinds of harmful cyanobacteria on fish, three different-sized (i.e. small, medium, and large) juvenile silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were exposed to cyanobacterial blooms-related density (1 × 10<sup>6</sup> cells/mL) of Microcystis aeruginosa (i.e. generating microcystins) and Oscillatoria sp. (i.e. generating cylindrospermopsin) for 3 d, after which biomarkers of oxidative stress and inflammation in the liver of fish were detected. The silver carp and bighead carp can effectively ingest Microcystis cells but cannot effectively ingest Oscillatoria cells through the measurement of the levels of cyanotoxins. Both Microcystis and Oscillatoria cells can induce different levels of oxidative stress and inflammatory responses in the liver of these juvenile filter-feeding fish via altering the biochemical parameters of the antioxidant system (e.g. superoxide dismutase activity) and immune system (e.g. interleukin-1β level). Therefore, our research identified potential data gaps that how the different types of cyanobacteria induce toxic effects in the liver of juvenile filter-feeding fish in a short time. This study contributes to a better understanding of the short-term adverse effects of different cyanobacterial species on juvenile fish, suggesting that the benthic toxic cyanobacteria-induced ecological and health risks require further attention.</p>\",\"PeriodicalId\":23289,\"journal\":{\"name\":\"Toxicon\",\"volume\":\" \",\"pages\":\"108183\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicon\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.toxicon.2024.108183\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.toxicon.2024.108183","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Bloom-forming planktonic Microcystis and benthic Oscillatoria-induced oxidative stress and inflammatory responses in juvenile silver carp and bighead carp.
As global warming and water eutrophication, the multiple proliferation of harmful cyanobacteria can form algal blooms and cause serious ecological problems. In recent years, the large-scale and persistent cyanobacterial blooms occur frequently worldwide and have attracted widespread attention due to the harmful impacts. Among these harmful bloom-forming cyanobacteria, the ecological and toxicological impacts of planktonic cyanobacteria have been extensively studied. However, research on the ecological risks and adverse effects of harmful benthic cyanobacteria is lagging. Filter-feeding fish could suffer from more toxic stimuli than other fish due to their special feeding habits. To investigate and compare the complex toxic effects of different kinds of harmful cyanobacteria on fish, three different-sized (i.e. small, medium, and large) juvenile silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were exposed to cyanobacterial blooms-related density (1 × 106 cells/mL) of Microcystis aeruginosa (i.e. generating microcystins) and Oscillatoria sp. (i.e. generating cylindrospermopsin) for 3 d, after which biomarkers of oxidative stress and inflammation in the liver of fish were detected. The silver carp and bighead carp can effectively ingest Microcystis cells but cannot effectively ingest Oscillatoria cells through the measurement of the levels of cyanotoxins. Both Microcystis and Oscillatoria cells can induce different levels of oxidative stress and inflammatory responses in the liver of these juvenile filter-feeding fish via altering the biochemical parameters of the antioxidant system (e.g. superoxide dismutase activity) and immune system (e.g. interleukin-1β level). Therefore, our research identified potential data gaps that how the different types of cyanobacteria induce toxic effects in the liver of juvenile filter-feeding fish in a short time. This study contributes to a better understanding of the short-term adverse effects of different cyanobacterial species on juvenile fish, suggesting that the benthic toxic cyanobacteria-induced ecological and health risks require further attention.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.