Muhammad Umar Farooq, Malaika Muneer, Ali Shahid, Muhammad Abdul Rehman, Khalil Ullah, Ghulam Murtaza, Rashid Iqbal, Javed Iqbal, Mehdi Rahimi
{"title":"利用密度泛函理论 (DFT) 合成并表征具有电学特性的芴酮衍生物。","authors":"Muhammad Umar Farooq, Malaika Muneer, Ali Shahid, Muhammad Abdul Rehman, Khalil Ullah, Ghulam Murtaza, Rashid Iqbal, Javed Iqbal, Mehdi Rahimi","doi":"10.1038/s41598-024-80477-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study provides thorough computational and experimental assessments of four types of novel synthesized thiosemicarbazones. The compounds were effectively synthesized using a condensation reaction between thiosemicarbazide and fluorenone, producing a remarkable range of 70-88%. Additional chemical structures were examined utilizing spectroscopic methods, including Fourier-transform infrared spectroscopy (FTIR), NMR spectroscopy, and ultraviolet-visible spectroscopy. The computational analyses utilized DFT using the M06/6-311G (d, p) technique. The electrical characteristics, including the stability of orbitals via energy exchange between a donor and acceptor, can be evaluated by natural bond orbital (NBO) analysis. The nonlinear optical (NLO) properties were analyzed to detect any prohibited energy gaps. FTIR and UV-visible data were computed using the identical M06/6-311G (d, p) level of theory. The NBO test has confirmed the occurrence of charge separation due to the efficient transfer of electrons from the donor to the acceptor unit over the π bridge. The molecular chemical softness and hardness are dependable indications of a molecule's chemical stability. A significant magnitude of the absolute value of polarizability and hyper-polarizability indicates considerable dispersion of electric charge. The outcomes derived from Density Functional Theory (DFT) generally align well with experimental findings.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"29015"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584800/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of fluorenone derivatives with electrical properties explored using density functional theory (DFT).\",\"authors\":\"Muhammad Umar Farooq, Malaika Muneer, Ali Shahid, Muhammad Abdul Rehman, Khalil Ullah, Ghulam Murtaza, Rashid Iqbal, Javed Iqbal, Mehdi Rahimi\",\"doi\":\"10.1038/s41598-024-80477-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study provides thorough computational and experimental assessments of four types of novel synthesized thiosemicarbazones. The compounds were effectively synthesized using a condensation reaction between thiosemicarbazide and fluorenone, producing a remarkable range of 70-88%. Additional chemical structures were examined utilizing spectroscopic methods, including Fourier-transform infrared spectroscopy (FTIR), NMR spectroscopy, and ultraviolet-visible spectroscopy. The computational analyses utilized DFT using the M06/6-311G (d, p) technique. The electrical characteristics, including the stability of orbitals via energy exchange between a donor and acceptor, can be evaluated by natural bond orbital (NBO) analysis. The nonlinear optical (NLO) properties were analyzed to detect any prohibited energy gaps. FTIR and UV-visible data were computed using the identical M06/6-311G (d, p) level of theory. The NBO test has confirmed the occurrence of charge separation due to the efficient transfer of electrons from the donor to the acceptor unit over the π bridge. The molecular chemical softness and hardness are dependable indications of a molecule's chemical stability. A significant magnitude of the absolute value of polarizability and hyper-polarizability indicates considerable dispersion of electric charge. The outcomes derived from Density Functional Theory (DFT) generally align well with experimental findings.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"29015\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584800/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-80477-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80477-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Synthesis and characterization of fluorenone derivatives with electrical properties explored using density functional theory (DFT).
This study provides thorough computational and experimental assessments of four types of novel synthesized thiosemicarbazones. The compounds were effectively synthesized using a condensation reaction between thiosemicarbazide and fluorenone, producing a remarkable range of 70-88%. Additional chemical structures were examined utilizing spectroscopic methods, including Fourier-transform infrared spectroscopy (FTIR), NMR spectroscopy, and ultraviolet-visible spectroscopy. The computational analyses utilized DFT using the M06/6-311G (d, p) technique. The electrical characteristics, including the stability of orbitals via energy exchange between a donor and acceptor, can be evaluated by natural bond orbital (NBO) analysis. The nonlinear optical (NLO) properties were analyzed to detect any prohibited energy gaps. FTIR and UV-visible data were computed using the identical M06/6-311G (d, p) level of theory. The NBO test has confirmed the occurrence of charge separation due to the efficient transfer of electrons from the donor to the acceptor unit over the π bridge. The molecular chemical softness and hardness are dependable indications of a molecule's chemical stability. A significant magnitude of the absolute value of polarizability and hyper-polarizability indicates considerable dispersion of electric charge. The outcomes derived from Density Functional Theory (DFT) generally align well with experimental findings.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.