{"title":"量子临界点的超快磁序光学感应。","authors":"Benedikt Fauseweh, Jian-Xin Zhu","doi":"10.1088/1361-648X/ad9659","DOIUrl":null,"url":null,"abstract":"<p><p>Time-resolved ultrafast spectroscopy has emerged as a promising tool to dynamically induce and manipulate non-trivial electronic states of matter out-of-equilibrium. Here we theoretically investigate light pulse driven dynamics in a Kondo lattice system close to quantum criticality. Based on a time-dependent auxiliary fermion mean-field calculation we show that light can dehybridize the local Kondo screening and induce oscillating magnetic order out of a previously paramagnetic state. Depending on the laser pulse field amplitude and frequency the Kondo singlet can be completely deconfined, inducing a dynamic Lifshitz transition that changes the Fermi surface topology. These phenomena can be identified in harmonic generation and time-resolved angle-resolved photoemission spectroscopy spectra. Our results shed new light on non-equilibrium states in heavy fermion systems.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast optical induction of magnetic order at a quantum critical point.\",\"authors\":\"Benedikt Fauseweh, Jian-Xin Zhu\",\"doi\":\"10.1088/1361-648X/ad9659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time-resolved ultrafast spectroscopy has emerged as a promising tool to dynamically induce and manipulate non-trivial electronic states of matter out-of-equilibrium. Here we theoretically investigate light pulse driven dynamics in a Kondo lattice system close to quantum criticality. Based on a time-dependent auxiliary fermion mean-field calculation we show that light can dehybridize the local Kondo screening and induce oscillating magnetic order out of a previously paramagnetic state. Depending on the laser pulse field amplitude and frequency the Kondo singlet can be completely deconfined, inducing a dynamic Lifshitz transition that changes the Fermi surface topology. These phenomena can be identified in harmonic generation and time-resolved angle-resolved photoemission spectroscopy spectra. Our results shed new light on non-equilibrium states in heavy fermion systems.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad9659\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9659","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Ultrafast optical induction of magnetic order at a quantum critical point.
Time-resolved ultrafast spectroscopy has emerged as a promising tool to dynamically induce and manipulate non-trivial electronic states of matter out-of-equilibrium. Here we theoretically investigate light pulse driven dynamics in a Kondo lattice system close to quantum criticality. Based on a time-dependent auxiliary fermion mean-field calculation we show that light can dehybridize the local Kondo screening and induce oscillating magnetic order out of a previously paramagnetic state. Depending on the laser pulse field amplitude and frequency the Kondo singlet can be completely deconfined, inducing a dynamic Lifshitz transition that changes the Fermi surface topology. These phenomena can be identified in harmonic generation and time-resolved angle-resolved photoemission spectroscopy spectra. Our results shed new light on non-equilibrium states in heavy fermion systems.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.