{"title":"启动因子 3 在核糖体上选择启动子 tRNA 的保真度中的作用。","authors":"Jitendra Singh, Umesh Varshney","doi":"10.1002/iub.2927","DOIUrl":null,"url":null,"abstract":"<p>Initiation factors play critical roles in fine-tuning translation initiation, which is the first and the rate-limiting step in protein synthesis. In bacteria, initiation factors, IF1, IF2 and IF3 work in concert to accurately position the initiator tRNA (i-tRNA) in its formyl-aminoacyl form, and the mRNA start codon at the ribosomal P-site, setting the stage for accommodation of the aminoacyl-tRNA in response to the second codon, and formation of the first peptide bond. Among these, IF3 is particularly crucial in ensuring the fidelity of translation initiation as it is involved in the accuracy of the selection of i-tRNA and the start codon. The two-domains (N- and C-terminal) dumbbell shaped structure and dynamics of IF3 significantly influence its fidelity function. This review explores how the N- and C-terminal domains of IF3 communicate with each other and how their interaction with i-tRNA helps to maintain the fidelity of translation initiation.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"77 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of the initiation factor 3 in the fidelity of initiator tRNA selection on ribosome\",\"authors\":\"Jitendra Singh, Umesh Varshney\",\"doi\":\"10.1002/iub.2927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Initiation factors play critical roles in fine-tuning translation initiation, which is the first and the rate-limiting step in protein synthesis. In bacteria, initiation factors, IF1, IF2 and IF3 work in concert to accurately position the initiator tRNA (i-tRNA) in its formyl-aminoacyl form, and the mRNA start codon at the ribosomal P-site, setting the stage for accommodation of the aminoacyl-tRNA in response to the second codon, and formation of the first peptide bond. Among these, IF3 is particularly crucial in ensuring the fidelity of translation initiation as it is involved in the accuracy of the selection of i-tRNA and the start codon. The two-domains (N- and C-terminal) dumbbell shaped structure and dynamics of IF3 significantly influence its fidelity function. This review explores how the N- and C-terminal domains of IF3 communicate with each other and how their interaction with i-tRNA helps to maintain the fidelity of translation initiation.</p>\",\"PeriodicalId\":14728,\"journal\":{\"name\":\"IUBMB Life\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUBMB Life\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/iub.2927\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iub.2927","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
翻译起始是蛋白质合成的第一步,也是限制蛋白质合成速度的一步。在细菌中,启动因子 IF1、IF2 和 IF3 协同工作,准确定位甲酰-氨基酰形式的启动子 tRNA(i-tRNA)和核糖体 P 位点上的 mRNA 起始密码子,为氨基酰-tRNA 响应第二个密码子并形成第一个肽键创造条件。其中,IF3 在确保翻译启动的准确性方面尤为关键,因为它参与了 i-tRNA 和起始密码子的准确选择。IF3 的双域(N 端和 C 端)哑铃形结构和动力学对其保真功能有重大影响。这篇综述探讨了 IF3 的 N 端和 C 端结构域如何相互沟通,以及它们与 i-tRNA 的相互作用如何有助于维持翻译启动的保真度。
Role of the initiation factor 3 in the fidelity of initiator tRNA selection on ribosome
Initiation factors play critical roles in fine-tuning translation initiation, which is the first and the rate-limiting step in protein synthesis. In bacteria, initiation factors, IF1, IF2 and IF3 work in concert to accurately position the initiator tRNA (i-tRNA) in its formyl-aminoacyl form, and the mRNA start codon at the ribosomal P-site, setting the stage for accommodation of the aminoacyl-tRNA in response to the second codon, and formation of the first peptide bond. Among these, IF3 is particularly crucial in ensuring the fidelity of translation initiation as it is involved in the accuracy of the selection of i-tRNA and the start codon. The two-domains (N- and C-terminal) dumbbell shaped structure and dynamics of IF3 significantly influence its fidelity function. This review explores how the N- and C-terminal domains of IF3 communicate with each other and how their interaction with i-tRNA helps to maintain the fidelity of translation initiation.
期刊介绍:
IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.