Shiraz Badurdeen, Robert Galinsky, Calum T Roberts, Kelly J Crossley, Valerie A Zahra, Alison Thiel, Yen Pham, Peter G Davis, Stuart B Hooper, Graeme R Polglase, Emily J Camm
{"title":"心肺复苏后的快速氧气滴定可减轻窒息新生羔羊的脑过度灌注和纹状体线粒体功能障碍。","authors":"Shiraz Badurdeen, Robert Galinsky, Calum T Roberts, Kelly J Crossley, Valerie A Zahra, Alison Thiel, Yen Pham, Peter G Davis, Stuart B Hooper, Graeme R Polglase, Emily J Camm","doi":"10.1177/0271678X241302738","DOIUrl":null,"url":null,"abstract":"<p><p>Asphyxiated neonates must have oxygenation rapidly restored to limit ongoing hypoxic-ischemic injury. However, the effects of transient hyperoxia after return of spontaneous circulation (ROSC) are poorly understood. We randomly allocated acutely asphyxiated, near-term lambs to cardiopulmonary resuscitation in 100% oxygen (\"standard oxygen\", n = 8) or air (n = 7) until 5 minutes after ROSC, or to resuscitation in 100% oxygen immediately weaned to air upon ROSC (\"rapid-wean\", n = 7). From 5 minutes post-ROSC, oxygen was titrated to target preductal oxygen saturation between 90-95%. Cerebral tissue oxygenation was transiently but markedly elevated following ROSC in the standard oxygen group compared to the air and rapid-wean groups. The air group had a delayed rise in cerebral tissue oxygenation from 5 minutes after ROSC coincident with up-titration of oxygen. These alterations in oxygen kinetics corresponded with similar overshoots in cerebral perfusion (pressure and flow), indicating a physiological mechanism. Transient cerebral tissue hyperoxia in the standard oxygen and air groups resulted in significant alterations in mitochondrial respiration and dynamics, relative to the rapid-wean group. Overall, rapid-wean of oxygen following ROSC preserved striatal mitochondrial respiratory function and reduced the expression of genes involved in free radical generation and apoptosis, suggesting a potential therapeutic strategy to limit cerebral reperfusion injury.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241302738"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584996/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid oxygen titration following cardiopulmonary resuscitation mitigates cerebral overperfusion and striatal mitochondrial dysfunction in asphyxiated newborn lambs.\",\"authors\":\"Shiraz Badurdeen, Robert Galinsky, Calum T Roberts, Kelly J Crossley, Valerie A Zahra, Alison Thiel, Yen Pham, Peter G Davis, Stuart B Hooper, Graeme R Polglase, Emily J Camm\",\"doi\":\"10.1177/0271678X241302738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Asphyxiated neonates must have oxygenation rapidly restored to limit ongoing hypoxic-ischemic injury. However, the effects of transient hyperoxia after return of spontaneous circulation (ROSC) are poorly understood. We randomly allocated acutely asphyxiated, near-term lambs to cardiopulmonary resuscitation in 100% oxygen (\\\"standard oxygen\\\", n = 8) or air (n = 7) until 5 minutes after ROSC, or to resuscitation in 100% oxygen immediately weaned to air upon ROSC (\\\"rapid-wean\\\", n = 7). From 5 minutes post-ROSC, oxygen was titrated to target preductal oxygen saturation between 90-95%. Cerebral tissue oxygenation was transiently but markedly elevated following ROSC in the standard oxygen group compared to the air and rapid-wean groups. The air group had a delayed rise in cerebral tissue oxygenation from 5 minutes after ROSC coincident with up-titration of oxygen. These alterations in oxygen kinetics corresponded with similar overshoots in cerebral perfusion (pressure and flow), indicating a physiological mechanism. Transient cerebral tissue hyperoxia in the standard oxygen and air groups resulted in significant alterations in mitochondrial respiration and dynamics, relative to the rapid-wean group. Overall, rapid-wean of oxygen following ROSC preserved striatal mitochondrial respiratory function and reduced the expression of genes involved in free radical generation and apoptosis, suggesting a potential therapeutic strategy to limit cerebral reperfusion injury.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":\" \",\"pages\":\"271678X241302738\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X241302738\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241302738","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Rapid oxygen titration following cardiopulmonary resuscitation mitigates cerebral overperfusion and striatal mitochondrial dysfunction in asphyxiated newborn lambs.
Asphyxiated neonates must have oxygenation rapidly restored to limit ongoing hypoxic-ischemic injury. However, the effects of transient hyperoxia after return of spontaneous circulation (ROSC) are poorly understood. We randomly allocated acutely asphyxiated, near-term lambs to cardiopulmonary resuscitation in 100% oxygen ("standard oxygen", n = 8) or air (n = 7) until 5 minutes after ROSC, or to resuscitation in 100% oxygen immediately weaned to air upon ROSC ("rapid-wean", n = 7). From 5 minutes post-ROSC, oxygen was titrated to target preductal oxygen saturation between 90-95%. Cerebral tissue oxygenation was transiently but markedly elevated following ROSC in the standard oxygen group compared to the air and rapid-wean groups. The air group had a delayed rise in cerebral tissue oxygenation from 5 minutes after ROSC coincident with up-titration of oxygen. These alterations in oxygen kinetics corresponded with similar overshoots in cerebral perfusion (pressure and flow), indicating a physiological mechanism. Transient cerebral tissue hyperoxia in the standard oxygen and air groups resulted in significant alterations in mitochondrial respiration and dynamics, relative to the rapid-wean group. Overall, rapid-wean of oxygen following ROSC preserved striatal mitochondrial respiratory function and reduced the expression of genes involved in free radical generation and apoptosis, suggesting a potential therapeutic strategy to limit cerebral reperfusion injury.
期刊介绍:
JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.