{"title":"年龄和饮食蛋氨酸限制对 rTg4510 小鼠额颞叶痴呆模型认知和行为表型的影响。","authors":"Marina Souza Matos , Annesha Sil , Gernot Riedel , Bettina Platt , Mirela Delibegovic","doi":"10.1016/j.neurobiolaging.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic disorders such as diabetes and obesity are linked to neurodegenerative diseases, with evidence of lower brain glucose metabolism and insulin resistance in dementia patients. Dietary methionine restriction (MR) is a nutritional intervention that enhances insulin sensitivity and delays ageing-associated metabolic alterations, however, its impact on neurodegenerative diseases is not fully understood. Here, we examined the behavioural and metabolic phenotypes of a murine tauopathy model (rTg4510), which overexpresses human P301L mutated tau, at 6 and 12 months of age, assessing the impact of an 8-week dietary MR in the older group. While rTg4510 mice displayed progressive behavioural and motor impairments at both ages, MR led to significant benefits in the 12-month-old cohort, improving motor coordination, short-term memory, and social recognition. These effects were accompanied by increased glycolysis markers and FGF21R1 levels in the hippocampus, alongside unaltered glucose metabolism/adiposity. Overall, our results reveal the impact of MR on an FTD-mouse model, suggesting this as a potential therapeutic intervention to delay and/or improve the progression of tau-related disease.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"146 ","pages":"Pages 24-37"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of age and dietary methionine restriction on cognitive and behavioural phenotypes in the rTg4510 mouse model of frontotemporal dementia\",\"authors\":\"Marina Souza Matos , Annesha Sil , Gernot Riedel , Bettina Platt , Mirela Delibegovic\",\"doi\":\"10.1016/j.neurobiolaging.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metabolic disorders such as diabetes and obesity are linked to neurodegenerative diseases, with evidence of lower brain glucose metabolism and insulin resistance in dementia patients. Dietary methionine restriction (MR) is a nutritional intervention that enhances insulin sensitivity and delays ageing-associated metabolic alterations, however, its impact on neurodegenerative diseases is not fully understood. Here, we examined the behavioural and metabolic phenotypes of a murine tauopathy model (rTg4510), which overexpresses human P301L mutated tau, at 6 and 12 months of age, assessing the impact of an 8-week dietary MR in the older group. While rTg4510 mice displayed progressive behavioural and motor impairments at both ages, MR led to significant benefits in the 12-month-old cohort, improving motor coordination, short-term memory, and social recognition. These effects were accompanied by increased glycolysis markers and FGF21R1 levels in the hippocampus, alongside unaltered glucose metabolism/adiposity. Overall, our results reveal the impact of MR on an FTD-mouse model, suggesting this as a potential therapeutic intervention to delay and/or improve the progression of tau-related disease.</div></div>\",\"PeriodicalId\":19110,\"journal\":{\"name\":\"Neurobiology of Aging\",\"volume\":\"146 \",\"pages\":\"Pages 24-37\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Aging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019745802400188X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019745802400188X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Effects of age and dietary methionine restriction on cognitive and behavioural phenotypes in the rTg4510 mouse model of frontotemporal dementia
Metabolic disorders such as diabetes and obesity are linked to neurodegenerative diseases, with evidence of lower brain glucose metabolism and insulin resistance in dementia patients. Dietary methionine restriction (MR) is a nutritional intervention that enhances insulin sensitivity and delays ageing-associated metabolic alterations, however, its impact on neurodegenerative diseases is not fully understood. Here, we examined the behavioural and metabolic phenotypes of a murine tauopathy model (rTg4510), which overexpresses human P301L mutated tau, at 6 and 12 months of age, assessing the impact of an 8-week dietary MR in the older group. While rTg4510 mice displayed progressive behavioural and motor impairments at both ages, MR led to significant benefits in the 12-month-old cohort, improving motor coordination, short-term memory, and social recognition. These effects were accompanied by increased glycolysis markers and FGF21R1 levels in the hippocampus, alongside unaltered glucose metabolism/adiposity. Overall, our results reveal the impact of MR on an FTD-mouse model, suggesting this as a potential therapeutic intervention to delay and/or improve the progression of tau-related disease.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.