突触表蛋白-1 C2结构域的AD3位点可调节结构域的稳定性。

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Matthew J Dominguez, Anthony A Bui, Johanna Villarreal, Adam Snow, Souvic Karmakar, Faraz M Harsini, Patrick J Rock, Anne M Rice, Kerry L Fuson, R Bryan Sutton
{"title":"突触表蛋白-1 C2结构域的AD3位点可调节结构域的稳定性。","authors":"Matthew J Dominguez, Anthony A Bui, Johanna Villarreal, Adam Snow, Souvic Karmakar, Faraz M Harsini, Patrick J Rock, Anne M Rice, Kerry L Fuson, R Bryan Sutton","doi":"10.1016/j.bpj.2024.11.009","DOIUrl":null,"url":null,"abstract":"<p><p>Synaptotagmin-1 (syt1) functions as the Ca<sup>2+</sup>-dependent sensor that triggers the rapid and synchronous release of neurotransmitters from neurotransmitter-containing vesicles during neuronal exocytosis. The syt1 protein has two homologous tandem C2 domains that interact with phospholipids in a Ca<sup>2+</sup>-dependent manner. Despite the crucial role of syt1 in exocytosis, the precise interactions between Ca<sup>2+</sup>, syt1, and phospholipids are not fully understood. In a study involving recessive lethal mutations in the syt1 gene, a specific mutation named AD3 was generated in Drosophila syt1, resulting in a significant reduction in Ca<sup>2+</sup>-dependent exocytosis. Further investigation revealed that the AD3 mutation was a missense mutation located in a conserved consensus sequence within the C2B domain of Drosophila syt1. However, the biophysical impact of the AD3 mutation had not been analyzed. Our study uses x-ray crystallography, isothermal titration calorimetry, thermodynamic analysis, and molecular dynamics simulation to show that the primary defect caused by the AD3 mutation in the syt1 protein is reduced thermodynamic stability. This instability alters the population of Ca<sup>2+</sup>-receptive states, leading to two major consequences: decreased affinity for calcium ions and compromised stabilization of the domain normally enhanced by Ca<sup>2+</sup>. We conclude that this conserved residue acts as a structural constraint, delimiting the movement of loop 3 within the pocket and ultimately influencing the affinity of the calcium ion binding with the C2 domain.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The AD3 locus of synaptotagmin-1 C2 domains modulates domain stability.\",\"authors\":\"Matthew J Dominguez, Anthony A Bui, Johanna Villarreal, Adam Snow, Souvic Karmakar, Faraz M Harsini, Patrick J Rock, Anne M Rice, Kerry L Fuson, R Bryan Sutton\",\"doi\":\"10.1016/j.bpj.2024.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synaptotagmin-1 (syt1) functions as the Ca<sup>2+</sup>-dependent sensor that triggers the rapid and synchronous release of neurotransmitters from neurotransmitter-containing vesicles during neuronal exocytosis. The syt1 protein has two homologous tandem C2 domains that interact with phospholipids in a Ca<sup>2+</sup>-dependent manner. Despite the crucial role of syt1 in exocytosis, the precise interactions between Ca<sup>2+</sup>, syt1, and phospholipids are not fully understood. In a study involving recessive lethal mutations in the syt1 gene, a specific mutation named AD3 was generated in Drosophila syt1, resulting in a significant reduction in Ca<sup>2+</sup>-dependent exocytosis. Further investigation revealed that the AD3 mutation was a missense mutation located in a conserved consensus sequence within the C2B domain of Drosophila syt1. However, the biophysical impact of the AD3 mutation had not been analyzed. Our study uses x-ray crystallography, isothermal titration calorimetry, thermodynamic analysis, and molecular dynamics simulation to show that the primary defect caused by the AD3 mutation in the syt1 protein is reduced thermodynamic stability. This instability alters the population of Ca<sup>2+</sup>-receptive states, leading to two major consequences: decreased affinity for calcium ions and compromised stabilization of the domain normally enhanced by Ca<sup>2+</sup>. We conclude that this conserved residue acts as a structural constraint, delimiting the movement of loop 3 within the pocket and ultimately influencing the affinity of the calcium ion binding with the C2 domain.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.11.009\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.11.009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

突触标记蛋白-1(syt1)是一种依赖于 Ca2+ 的传感器,在神经元外泌过程中,它能触发含有神经递质的囊泡快速、同步地释放神经递质。syt1 蛋白有两个同源的串联 C2 结构域,它们以 Ca2+ 依赖性方式与磷脂相互作用。尽管 syt1 在外泌过程中起着至关重要的作用,但人们对 Ca2+、syt1 和磷脂之间的精确相互作用并不完全了解。在一项涉及 syt1 基因隐性致死突变的研究中,果蝇 syt1 产生了一种名为 AD3 的特异性突变,导致 Ca2+ 依赖性外渗显著减少。进一步研究发现,AD3 突变是位于果蝇 syt1 C2B 结构域内一个保守共识序列上的错义突变。然而,AD3突变的生物物理影响尚未得到分析。我们的研究利用 X 射线晶体学、等温滴定量热法(ITC)、热力学分析和分子动力学模拟表明,syt1 蛋白中 AD3 突变导致的主要缺陷是热力学稳定性降低。这种不稳定性改变了 Ca2+ 反应状态的数量,导致两个主要后果:对钙离子的亲和力下降,以及正常情况下由 Ca2+ 增强的结构域的稳定性受损。我们的结论是,这个保守残基起到了结构限制的作用,它限定了环 3 在口袋中的移动,并最终影响了钙离子与 C2 结构域结合的亲和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The AD3 locus of synaptotagmin-1 C2 domains modulates domain stability.

Synaptotagmin-1 (syt1) functions as the Ca2+-dependent sensor that triggers the rapid and synchronous release of neurotransmitters from neurotransmitter-containing vesicles during neuronal exocytosis. The syt1 protein has two homologous tandem C2 domains that interact with phospholipids in a Ca2+-dependent manner. Despite the crucial role of syt1 in exocytosis, the precise interactions between Ca2+, syt1, and phospholipids are not fully understood. In a study involving recessive lethal mutations in the syt1 gene, a specific mutation named AD3 was generated in Drosophila syt1, resulting in a significant reduction in Ca2+-dependent exocytosis. Further investigation revealed that the AD3 mutation was a missense mutation located in a conserved consensus sequence within the C2B domain of Drosophila syt1. However, the biophysical impact of the AD3 mutation had not been analyzed. Our study uses x-ray crystallography, isothermal titration calorimetry, thermodynamic analysis, and molecular dynamics simulation to show that the primary defect caused by the AD3 mutation in the syt1 protein is reduced thermodynamic stability. This instability alters the population of Ca2+-receptive states, leading to two major consequences: decreased affinity for calcium ions and compromised stabilization of the domain normally enhanced by Ca2+. We conclude that this conserved residue acts as a structural constraint, delimiting the movement of loop 3 within the pocket and ultimately influencing the affinity of the calcium ion binding with the C2 domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信