利用机器学习了解视觉注意力在多属性选择中的作用。

IF 2.1 4区 心理学 Q2 PSYCHOLOGY, EXPERIMENTAL
Frouke Hermens , Nicolas Krucien , Mandy Ryan
{"title":"利用机器学习了解视觉注意力在多属性选择中的作用。","authors":"Frouke Hermens ,&nbsp;Nicolas Krucien ,&nbsp;Mandy Ryan","doi":"10.1016/j.actpsy.2024.104581","DOIUrl":null,"url":null,"abstract":"<div><div>Whether eye movements (as a measure of visual attention) contribute to the understanding of how multi-attribute decisions are made, is still a matter of debate. In this study, we show how machine learning methods can be used to separate the effects of the information presented, eye movement patterns, and attention to specific information. We also show how to deal with data from a relatively small sample of participants, often found in eye tracking studies that require in-lab testing. We make use of a dataset of 30 females who decided whether or not to accept screening for Chlamydia in 21 different scenarios. For this dataset, we find that eye movements did not add to the prediction of choice beyond the information presented to participants. Future studies should determine whether the same conclusion holds for other eye tracking datasets.</div></div>","PeriodicalId":7141,"journal":{"name":"Acta Psychologica","volume":"251 ","pages":"Article 104581"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of machine learning to understand the role of visual attention in multi-attribute choice\",\"authors\":\"Frouke Hermens ,&nbsp;Nicolas Krucien ,&nbsp;Mandy Ryan\",\"doi\":\"10.1016/j.actpsy.2024.104581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Whether eye movements (as a measure of visual attention) contribute to the understanding of how multi-attribute decisions are made, is still a matter of debate. In this study, we show how machine learning methods can be used to separate the effects of the information presented, eye movement patterns, and attention to specific information. We also show how to deal with data from a relatively small sample of participants, often found in eye tracking studies that require in-lab testing. We make use of a dataset of 30 females who decided whether or not to accept screening for Chlamydia in 21 different scenarios. For this dataset, we find that eye movements did not add to the prediction of choice beyond the information presented to participants. Future studies should determine whether the same conclusion holds for other eye tracking datasets.</div></div>\",\"PeriodicalId\":7141,\"journal\":{\"name\":\"Acta Psychologica\",\"volume\":\"251 \",\"pages\":\"Article 104581\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Psychologica\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001691824004591\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Psychologica","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001691824004591","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

眼动(作为视觉注意力的一种衡量标准)是否有助于理解多属性决策是如何做出的,这仍然是一个争论不休的问题。在本研究中,我们展示了如何利用机器学习方法来区分所呈现的信息、眼球运动模式以及对特定信息的注意力的影响。我们还展示了如何处理来自相对较少的参与者样本的数据,这在需要实验室测试的眼动跟踪研究中经常会发现。我们使用了一个由 30 名女性组成的数据集,她们在 21 种不同的场景中决定是否接受衣原体筛查。在这个数据集中,我们发现眼动并没有增加对参与者选择的预测,而只是增加了向参与者提供的信息。未来的研究应确定相同的结论是否适用于其他眼动追踪数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of machine learning to understand the role of visual attention in multi-attribute choice
Whether eye movements (as a measure of visual attention) contribute to the understanding of how multi-attribute decisions are made, is still a matter of debate. In this study, we show how machine learning methods can be used to separate the effects of the information presented, eye movement patterns, and attention to specific information. We also show how to deal with data from a relatively small sample of participants, often found in eye tracking studies that require in-lab testing. We make use of a dataset of 30 females who decided whether or not to accept screening for Chlamydia in 21 different scenarios. For this dataset, we find that eye movements did not add to the prediction of choice beyond the information presented to participants. Future studies should determine whether the same conclusion holds for other eye tracking datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Psychologica
Acta Psychologica PSYCHOLOGY, EXPERIMENTAL-
CiteScore
3.00
自引率
5.60%
发文量
274
审稿时长
36 weeks
期刊介绍: Acta Psychologica publishes original articles and extended reviews on selected books in any area of experimental psychology. The focus of the Journal is on empirical studies and evaluative review articles that increase the theoretical understanding of human capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信