土壤碳储量和氮储量对灌溉的响应--全球荟萃分析。

IF 8 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-12-20 Epub Date: 2024-11-23 DOI:10.1016/j.scitotenv.2024.177641
Weihao Sun, Zhibin He, Dengke Ma, Bing Liu, Rui Li, Shuai Wang, Arash Malekian
{"title":"土壤碳储量和氮储量对灌溉的响应--全球荟萃分析。","authors":"Weihao Sun, Zhibin He, Dengke Ma, Bing Liu, Rui Li, Shuai Wang, Arash Malekian","doi":"10.1016/j.scitotenv.2024.177641","DOIUrl":null,"url":null,"abstract":"<p><p>Irrigation has profound influences on carbon (C) and nitrogen (N) stocks in agricultural soil. However, the global-scale irrigation effects on C and N pools in farmland soils, as well as the C: N ratio (C/N), remain unclear. This study integrates existing studies on C and N in irrigated farmland worldwide and investigates the responses of soil C and N concentrations, stocks, and the C/N to irrigation by meta-analysis. The results suggest that irrigation has a significantly positive impact on soil organic carbon (SOC) and total nitrogen (TN) stocks overall, with the stocks increase by 10.9 % and 7.4 %, respectively, and a 3.1 % increase in the C/N, but has no significant impact in soil microbial biomass carbon (MBC). The positive feedback of SOC (6.0 %) and TN (6.6 %) stocks in topsoil is more pronounced in response to irrigation than that in subsoil. The impact of irrigation on SOC stocks is greater in semi-arid regions and under flood irrigation. Furthermore, SOC stocks increase more in sandy and loamy soils compared to clay soil, while TN exhibits larger increases in clay soil. The results also indicate that the response of C/N to irrigation is more pronounced under the condition of deep soil, sandy soil, and semi-arid regions. The influence of irrigation on SOC stocks and the C/N increases with the duration of irrigation, while the impact on TN stocks tends to weaken. Our study deepens the understanding of the mechanisms behind irrigation's effects on soil C and N stocks and therefore provides theoretical insights for the management of soil fertility in irrigated agriculture.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177641"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of soil carbon and nitrogen stocks to irrigation - A global meta-analysis.\",\"authors\":\"Weihao Sun, Zhibin He, Dengke Ma, Bing Liu, Rui Li, Shuai Wang, Arash Malekian\",\"doi\":\"10.1016/j.scitotenv.2024.177641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Irrigation has profound influences on carbon (C) and nitrogen (N) stocks in agricultural soil. However, the global-scale irrigation effects on C and N pools in farmland soils, as well as the C: N ratio (C/N), remain unclear. This study integrates existing studies on C and N in irrigated farmland worldwide and investigates the responses of soil C and N concentrations, stocks, and the C/N to irrigation by meta-analysis. The results suggest that irrigation has a significantly positive impact on soil organic carbon (SOC) and total nitrogen (TN) stocks overall, with the stocks increase by 10.9 % and 7.4 %, respectively, and a 3.1 % increase in the C/N, but has no significant impact in soil microbial biomass carbon (MBC). The positive feedback of SOC (6.0 %) and TN (6.6 %) stocks in topsoil is more pronounced in response to irrigation than that in subsoil. The impact of irrigation on SOC stocks is greater in semi-arid regions and under flood irrigation. Furthermore, SOC stocks increase more in sandy and loamy soils compared to clay soil, while TN exhibits larger increases in clay soil. The results also indicate that the response of C/N to irrigation is more pronounced under the condition of deep soil, sandy soil, and semi-arid regions. The influence of irrigation on SOC stocks and the C/N increases with the duration of irrigation, while the impact on TN stocks tends to weaken. Our study deepens the understanding of the mechanisms behind irrigation's effects on soil C and N stocks and therefore provides theoretical insights for the management of soil fertility in irrigated agriculture.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177641\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177641\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177641","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

灌溉对农田土壤中碳(C)和氮(N)的储量有着深远的影响。然而,全球范围内灌溉对农田土壤中碳库和氮库以及碳氮比(C/N)的影响仍不清楚。本研究整合了现有的全球灌溉农田中碳和氮的研究,通过元分析研究了土壤中碳和氮的浓度、储量以及碳/氮比对灌溉的响应。结果表明,灌溉对土壤有机碳(SOC)和全氮(TN)储量总体上有显著的正向影响,储量分别增加了 10.9% 和 7.4%,C/N 增加了 3.1%,但对土壤微生物生物量碳(MBC)没有显著影响。与底土相比,灌溉对表土中 SOC(6.0%)和 TN(6.6%)储量的正反馈更为明显。在半干旱地区和漫灌条件下,灌溉对 SOC 储量的影响更大。此外,与粘土相比,沙土和壤土中的 SOC 储量增加更多,而 TN 在粘土中的增加更大。结果还表明,在深厚土壤、沙质土壤和半干旱地区,C/N 对灌溉的响应更为明显。灌溉对 SOC 储量和 C/N 的影响随着灌溉时间的延长而增加,而对 TN 储量的影响则趋于减弱。我们的研究加深了人们对灌溉影响土壤碳储量和氮储量的机制的理解,从而为灌溉农业的土壤肥力管理提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Response of soil carbon and nitrogen stocks to irrigation - A global meta-analysis.

Irrigation has profound influences on carbon (C) and nitrogen (N) stocks in agricultural soil. However, the global-scale irrigation effects on C and N pools in farmland soils, as well as the C: N ratio (C/N), remain unclear. This study integrates existing studies on C and N in irrigated farmland worldwide and investigates the responses of soil C and N concentrations, stocks, and the C/N to irrigation by meta-analysis. The results suggest that irrigation has a significantly positive impact on soil organic carbon (SOC) and total nitrogen (TN) stocks overall, with the stocks increase by 10.9 % and 7.4 %, respectively, and a 3.1 % increase in the C/N, but has no significant impact in soil microbial biomass carbon (MBC). The positive feedback of SOC (6.0 %) and TN (6.6 %) stocks in topsoil is more pronounced in response to irrigation than that in subsoil. The impact of irrigation on SOC stocks is greater in semi-arid regions and under flood irrigation. Furthermore, SOC stocks increase more in sandy and loamy soils compared to clay soil, while TN exhibits larger increases in clay soil. The results also indicate that the response of C/N to irrigation is more pronounced under the condition of deep soil, sandy soil, and semi-arid regions. The influence of irrigation on SOC stocks and the C/N increases with the duration of irrigation, while the impact on TN stocks tends to weaken. Our study deepens the understanding of the mechanisms behind irrigation's effects on soil C and N stocks and therefore provides theoretical insights for the management of soil fertility in irrigated agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信