{"title":"抑制 H3K27me3 去甲基化酶会破坏库蚊的休眠形成。","authors":"Xueyan Wei , Prabin Dhungana , Kaylah Callender , Berhanu Zewde , Fu Chen , Sung Joon Kim , Cheolho Sim","doi":"10.1016/j.ibmb.2024.104216","DOIUrl":null,"url":null,"abstract":"<div><div>Diapause (D) is a hormonally controlled alternative developmental pathway that allows mosquitoes to survive harsh winter conditions. Key characteristics of mosquito diapause include elevated lipid storage, enhanced stress and cold endurance, and extended longevity. These phenotypic changes are often associated with dynamic alterations in the transcriptome and epigenome. In our previous study, we identified significantly lower H3K27me2 levels in the fat body (FB) of diapausing <em>Culex pipiens</em>. However, the specific roles of the repressive H3K27 methylation marks in mosquito diapause have not been investigated. In the present study, we employed the effective histone lysine demethylase inhibitor GSK-J4 to assess the functions of H3K27me3 levels in the fat body on diapause initiation and phenotypes in <em>Cx. pipiens</em>. Results from solid-state NMR (ssNMR), Fourier-transform infrared spectroscopy (FTIR), and biochemical assays suggest that elevated H3K27me3 levels via GSK-J4 inhibition led to disrupted accumulation of lipids and glycogen in diapausing mosquitoes. GSK-J4 treatment also increased the mortality rate, resulting in lower survivability in treated mosquitoes. Together, these findings propose a crucial role for H3K27me3 in diapause formation, particularly related to energy metabolism. Our results provide a potential target for novel vector control strategies for this species.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"176 ","pages":"Article 104216"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of the H3K27me3 demethylase disrupts diapause formation in mosquito Culex pipiens\",\"authors\":\"Xueyan Wei , Prabin Dhungana , Kaylah Callender , Berhanu Zewde , Fu Chen , Sung Joon Kim , Cheolho Sim\",\"doi\":\"10.1016/j.ibmb.2024.104216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diapause (D) is a hormonally controlled alternative developmental pathway that allows mosquitoes to survive harsh winter conditions. Key characteristics of mosquito diapause include elevated lipid storage, enhanced stress and cold endurance, and extended longevity. These phenotypic changes are often associated with dynamic alterations in the transcriptome and epigenome. In our previous study, we identified significantly lower H3K27me2 levels in the fat body (FB) of diapausing <em>Culex pipiens</em>. However, the specific roles of the repressive H3K27 methylation marks in mosquito diapause have not been investigated. In the present study, we employed the effective histone lysine demethylase inhibitor GSK-J4 to assess the functions of H3K27me3 levels in the fat body on diapause initiation and phenotypes in <em>Cx. pipiens</em>. Results from solid-state NMR (ssNMR), Fourier-transform infrared spectroscopy (FTIR), and biochemical assays suggest that elevated H3K27me3 levels via GSK-J4 inhibition led to disrupted accumulation of lipids and glycogen in diapausing mosquitoes. GSK-J4 treatment also increased the mortality rate, resulting in lower survivability in treated mosquitoes. Together, these findings propose a crucial role for H3K27me3 in diapause formation, particularly related to energy metabolism. Our results provide a potential target for novel vector control strategies for this species.</div></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"176 \",\"pages\":\"Article 104216\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965174824001474\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824001474","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Suppression of the H3K27me3 demethylase disrupts diapause formation in mosquito Culex pipiens
Diapause (D) is a hormonally controlled alternative developmental pathway that allows mosquitoes to survive harsh winter conditions. Key characteristics of mosquito diapause include elevated lipid storage, enhanced stress and cold endurance, and extended longevity. These phenotypic changes are often associated with dynamic alterations in the transcriptome and epigenome. In our previous study, we identified significantly lower H3K27me2 levels in the fat body (FB) of diapausing Culex pipiens. However, the specific roles of the repressive H3K27 methylation marks in mosquito diapause have not been investigated. In the present study, we employed the effective histone lysine demethylase inhibitor GSK-J4 to assess the functions of H3K27me3 levels in the fat body on diapause initiation and phenotypes in Cx. pipiens. Results from solid-state NMR (ssNMR), Fourier-transform infrared spectroscopy (FTIR), and biochemical assays suggest that elevated H3K27me3 levels via GSK-J4 inhibition led to disrupted accumulation of lipids and glycogen in diapausing mosquitoes. GSK-J4 treatment also increased the mortality rate, resulting in lower survivability in treated mosquitoes. Together, these findings propose a crucial role for H3K27me3 in diapause formation, particularly related to energy metabolism. Our results provide a potential target for novel vector control strategies for this species.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.