{"title":"通过密度泛函理论确定和理解 Li2GaSb 和 Li3Sb 的结构电子动态弹性和光学特性","authors":"Sinem Erden Gulebaglan, Emel Kilit Dogan","doi":"10.1007/s11082-024-07391-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the structural, electronic, elastic, optical and dynamic properties of Li<sub>3</sub>Sb and Li<sub>2</sub>GaSb crystal structures were researched by using the density functional theory applied in Abinit and Quantum Espresso package programs. All calculations in both programs were performed using the Generalized Gradient Approximation as an exchange–correlation function in Kohn–Sham equations. When the structural properties of the crystals were examined, they were found to be in good agreement with other theoretical results. As a result of the calculations related to the electronic properties, it was determined that the Li<sub>3</sub>Sb crystal exhibited semiconducting properties and the Li<sub>2</sub>GaSb crystal exhibited metallic properties. Then, focusing on the dynamic properties of Li<sub>3</sub>Sb and Li<sub>2</sub>GaSb crystals, it was concluded that both crystals are dynamically stable. From the calculations made, it was concluded that the stable state did not deteriorate when pressure was applied to the Li<sub>3</sub>Sb crystal, but the stable state deteriorated when pressure was applied to the Li<sub>2</sub>GaSb crystal from 528 kbar pressure. In addition, the calculations showed that the thermal conductivity of Li<sub>3</sub>Sb is higher than that of Li<sub>2</sub>GaSb. By calculating the elastic properties, it was found that Li<sub>3</sub>Sb is a brittle material while Li<sub>2</sub>GaSb is an elastic material. Finally, based on the semiconductor properties of the Li<sub>3</sub>Sb crystal, its optical properties were investigated.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination and understanding of the structural electronic dynamic elastic and optic properties of Li2GaSb and Li3Sb by density functional theory\",\"authors\":\"Sinem Erden Gulebaglan, Emel Kilit Dogan\",\"doi\":\"10.1007/s11082-024-07391-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the structural, electronic, elastic, optical and dynamic properties of Li<sub>3</sub>Sb and Li<sub>2</sub>GaSb crystal structures were researched by using the density functional theory applied in Abinit and Quantum Espresso package programs. All calculations in both programs were performed using the Generalized Gradient Approximation as an exchange–correlation function in Kohn–Sham equations. When the structural properties of the crystals were examined, they were found to be in good agreement with other theoretical results. As a result of the calculations related to the electronic properties, it was determined that the Li<sub>3</sub>Sb crystal exhibited semiconducting properties and the Li<sub>2</sub>GaSb crystal exhibited metallic properties. Then, focusing on the dynamic properties of Li<sub>3</sub>Sb and Li<sub>2</sub>GaSb crystals, it was concluded that both crystals are dynamically stable. From the calculations made, it was concluded that the stable state did not deteriorate when pressure was applied to the Li<sub>3</sub>Sb crystal, but the stable state deteriorated when pressure was applied to the Li<sub>2</sub>GaSb crystal from 528 kbar pressure. In addition, the calculations showed that the thermal conductivity of Li<sub>3</sub>Sb is higher than that of Li<sub>2</sub>GaSb. By calculating the elastic properties, it was found that Li<sub>3</sub>Sb is a brittle material while Li<sub>2</sub>GaSb is an elastic material. Finally, based on the semiconductor properties of the Li<sub>3</sub>Sb crystal, its optical properties were investigated.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"56 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-024-07391-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07391-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Determination and understanding of the structural electronic dynamic elastic and optic properties of Li2GaSb and Li3Sb by density functional theory
In this work, the structural, electronic, elastic, optical and dynamic properties of Li3Sb and Li2GaSb crystal structures were researched by using the density functional theory applied in Abinit and Quantum Espresso package programs. All calculations in both programs were performed using the Generalized Gradient Approximation as an exchange–correlation function in Kohn–Sham equations. When the structural properties of the crystals were examined, they were found to be in good agreement with other theoretical results. As a result of the calculations related to the electronic properties, it was determined that the Li3Sb crystal exhibited semiconducting properties and the Li2GaSb crystal exhibited metallic properties. Then, focusing on the dynamic properties of Li3Sb and Li2GaSb crystals, it was concluded that both crystals are dynamically stable. From the calculations made, it was concluded that the stable state did not deteriorate when pressure was applied to the Li3Sb crystal, but the stable state deteriorated when pressure was applied to the Li2GaSb crystal from 528 kbar pressure. In addition, the calculations showed that the thermal conductivity of Li3Sb is higher than that of Li2GaSb. By calculating the elastic properties, it was found that Li3Sb is a brittle material while Li2GaSb is an elastic material. Finally, based on the semiconductor properties of the Li3Sb crystal, its optical properties were investigated.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.