{"title":"隐藏的({text {Sp}}(1)\\)对称性和超凯勒方程上的布兰量子化","authors":"NaiChung Conan Leung, YuTung Yau","doi":"10.1007/s00220-024-05135-y","DOIUrl":null,"url":null,"abstract":"<div><p>For a fixed prequantum line bundle <i>L</i> over a hyperKähler manifold <i>X</i>, we find a natural <span>\\({\\text {Sp}}(1)\\)</span>-action on <span>\\(\\Omega ^*(X, L)\\)</span> intertwining a twistor family of <span>\\({\\text {Spin}}^{{\\text {c}}}\\)</span>-Dirac Laplacians on the spaces of <i>L</i>-valued <span>\\((0, *)\\)</span>-forms on <i>X</i>, noting that <i>L</i> is holomorphic for only one complex structure in the twistor family. This establishes a geometric quantization of <i>X</i> via Gukov-Witten brane quantization and leads to a proposal of a mathematical definition of <span>\\({\\text {Hom}}(\\overline{\\mathcal {B}}_{{\\text {cc}}}, \\mathcal {B}_{{\\text {cc}}})\\)</span> for the canonical coisotropic A-brane <span>\\(\\mathcal {B}_{{\\text {cc}}}\\)</span> on <i>X</i> and its conjugate brane <span>\\(\\overline{\\mathcal {B}}_{{\\text {cc}}}\\)</span>.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hidden \\\\({\\\\text {Sp}}(1)\\\\)-Symmetry and Brane Quantization on HyperKähler Manifolds\",\"authors\":\"NaiChung Conan Leung, YuTung Yau\",\"doi\":\"10.1007/s00220-024-05135-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a fixed prequantum line bundle <i>L</i> over a hyperKähler manifold <i>X</i>, we find a natural <span>\\\\({\\\\text {Sp}}(1)\\\\)</span>-action on <span>\\\\(\\\\Omega ^*(X, L)\\\\)</span> intertwining a twistor family of <span>\\\\({\\\\text {Spin}}^{{\\\\text {c}}}\\\\)</span>-Dirac Laplacians on the spaces of <i>L</i>-valued <span>\\\\((0, *)\\\\)</span>-forms on <i>X</i>, noting that <i>L</i> is holomorphic for only one complex structure in the twistor family. This establishes a geometric quantization of <i>X</i> via Gukov-Witten brane quantization and leads to a proposal of a mathematical definition of <span>\\\\({\\\\text {Hom}}(\\\\overline{\\\\mathcal {B}}_{{\\\\text {cc}}}, \\\\mathcal {B}_{{\\\\text {cc}}})\\\\)</span> for the canonical coisotropic A-brane <span>\\\\(\\\\mathcal {B}_{{\\\\text {cc}}}\\\\)</span> on <i>X</i> and its conjugate brane <span>\\\\(\\\\overline{\\\\mathcal {B}}_{{\\\\text {cc}}}\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 12\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05135-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05135-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
对于超凯勒流形 X 上的一个固定的前量子线束 L,我们会在(Omega ^*(X.L.)上发现一个自然的({text {Spin}}(1))作用、L)上的\({\text {Spin}}^{\text{c}}}\)-Dirac拉普拉斯的扭子族交织在X上的L值\((0, *)\)-形式的空间上,注意到扭子族中只有一个复结构的L是全态的。这就通过古科夫-维滕(Gukov-Witten)的 "鹤"(brane)量子化建立了 X 的几何量子化,并由此提出了 \({\text {Hom}}(\overline\mathcal {B}}_{{\text {cc}}、\)是 X 上各向同性 Arane \(\mathcal {B}_{text {cc}}})和它的共轭 Brane \(\overline{mathcal {B}_{text {cc}}})的统一定义。
Hidden \({\text {Sp}}(1)\)-Symmetry and Brane Quantization on HyperKähler Manifolds
For a fixed prequantum line bundle L over a hyperKähler manifold X, we find a natural \({\text {Sp}}(1)\)-action on \(\Omega ^*(X, L)\) intertwining a twistor family of \({\text {Spin}}^{{\text {c}}}\)-Dirac Laplacians on the spaces of L-valued \((0, *)\)-forms on X, noting that L is holomorphic for only one complex structure in the twistor family. This establishes a geometric quantization of X via Gukov-Witten brane quantization and leads to a proposal of a mathematical definition of \({\text {Hom}}(\overline{\mathcal {B}}_{{\text {cc}}}, \mathcal {B}_{{\text {cc}}})\) for the canonical coisotropic A-brane \(\mathcal {B}_{{\text {cc}}}\) on X and its conjugate brane \(\overline{\mathcal {B}}_{{\text {cc}}}\).
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.